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Target Scheduling for 
Directed Energy Weapon Platforms 

Executive Summary 

Introduction 
This final report documents the results of a three-year technology development pro- 

gram sponsored by the Rome Laboratory (RL) as part of the Strategic Defense Ini- 
tiative (SDI) and executed at the Lawrence Livermore National Laboratory (LLNL). 
The major objectives of this program were to develop, test, and deliver algorithms for 
managing Directed Energy Weapons (DEW) platforms during defensive engagements 
with a number of offensive weapons, which we shall call the targets. The main focus 
of this program has been on space-based High-Energy Lasers (HEL) and Neutral Par- 
ticle Beam (NPB) platforms operating in earth-orbit during the boost and midcourse 
phases. 

The Real-Time Target Scheduling Problem 

During the prosecution of targets, the effective allocation of weapon energy is the 
key to achieving optimal platform performance. This involves three major real-time 
tasks: 

1. To derive the order in which targets should be prosecuted. 

2. To determine how much energy and time should be allocated to 
each target. 

3. To decide which targets should be allowed to leak through when- 
ever there is insufficient time to effectively prosecute all targets. 

The first task is called target sequencing; the second, dwell time allocation; and the 
third, target rejection. Collectively, all three tasks constitute a target scheduling task, to 
which we shall usually refer as the Target Scheduling Problem (TSP). The major goal 
of our program was to develop, test, and deliver real-time algorithms to perform this 
decision task for boost phase and midcourse threats ranging from a few to thousands 
of objects. 

There has been a long-held belief in some battle management circles that this com- 
prehensive decision task should be performed at the overall battle management level 
on a separate platform.  In our opinion, the centralized control of complex, dynamic 



networks whose nodes strongly depend on local data and conditions is usually doomed 
to failure due to excessive communication requirements, and because severe vulner- 
abilities are usually inevitable with a fully centralized approach. Furthermore, the 
memories and processing units of battle managers are usually fully occupied with over- 
all battle decisions such as the allocation of clusters of targets to individual platforms. 
A distributed battle management policy is then far better because it lets individual 
platforms decide how to handle each element of their assigned cluster. 

Conceptually, TSP can be classified as a "single-maching job shop scheduling prob- 
lem".* While such problems have received considerable attention for many years, TSP 
is peculiar in so many complicating ways that the direct application of existing schedul- 
ing methods was not possible. Because the performance and robustness of real-time 
decisions algorithms is essentially determined by the quality of the physical models and 
data from which they are derived, most of the numerical and computational challenges 
experienced during our research resulted from our choice of modeling detail. Many of 
these difficulties could have been avoided by choosing a more convenient and necessar- 
ily more abstract modeling viewpoint, as others have done before us. But the need to 
achieve or at least to approach true operational optimality was a strong motivation to 
seek models that adequately reflect the physical reality within which engagements take 
place. In contrast to general and theoretical scheduling algorithms, target scheduling al- 
gorithms derive their decisions from a wide variety of real-time dynamic and stochastic 
data, and they must therefore be strongly physics-based. 

A simple input-output description of the target scheduling decision function is pro- 
vided in Fig. 1. In response to threat information updates, and given current informa- 

Optimization criterion 
Constraints 

Treat information' 

1 
Target 

scheduler 

Fast steering commands 
Forebody commands 
Platform commands 
Target sequence 
Target dwell times 

t 
DEW platform parameters 
Sensor information 
Environment and background information 

Figure 1. Input-output diagram of the target scheduling function. 

* French (1982); Ibaraki and Katoh (1988); Baker (1974); Conway et al. (1967). 
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tion about the DEW platform, the external sensor network and the environment, the 
scheduling algorithm generates commands to the platform and to its control hardware. 
Output commands specify the start time and duration of DEW pulses, the desired 
pointing direction of the platform, the forebody, and the fast beam steering system. 
Any errors in the command-generating process can significantly reduce platform effec- 
tiveness, thereby severely increasing target leakage, so that the search for an optimal 
command sequence is essential. Any discontinuities in the command sequence can pro- 
duce unwanted oscillations or vibrations in the platform structure, so special attention 
must be directed to produce smooth command sequences. 

Approach 

In our search for an optimal command sequence, we attempt to minimize the expected 
leakage cost, usually referred to as the (expected) Leakage Risk. Most of the difficulties 
in estimating the minimum risk are due to errors in evaluating the actual leakage risk 
in real time, and this imposes minimal modeling fidelity requirements. For instance, 
threat descriptions provided to the scheduling algorithms must include threat geometry, 
threat dynamics, and uncertainties in state and in parameters. DEW platform models 
must account for errors in Acquisition, Tracking, and Pointing (ATP) and errors in 
information handovers from external battle management and sensor platforms. 

The risk minimization process is also subject to rigid energy and dynamics con- 
straints. Platform hardware, for instance, is subject to hard limits in angular displace- 
ment, slew rates, acceleration, and mechanical damping. These limits increase platform 
response time, stretch out the operational timeline, and may require ignoring or reject- 
ing some target so that others can be successfully prosecuted. Other constraints are 
due to restrictions in the opportunity windows within which threats must be processed. 
Each target has an opportunity window that opens at the target's availability, or re- 
lease time, and closes at its deadline, the time by which the processing of the target 
must be completed, lest it leak through. Missed deadlines result in the sure leakage of 
one or more targets and, for anything but the sparsest threats, deadlines contitute our 
most severe constraints. Because their satisfaction was our highest scheduling prior- 
ity, we have appropriately called our algorithm the Deadline-Driven Target Scheduling 
(DDTS) algorithm. 

Target scheduling is easily the most computation-intensive decision process onboard 
a platform. Analytically intractable, the problem can only be solved in real time 
by using heuristics designed to approach optimum performance within acceptable er- 
rors. Reasonable upper bounds for such errors have not yet been found, even for 
most simplified versions of the target scheduling problem. To attain a satisfactory de- 
gree of confidence in the algorithm's performance, our approach involved a balanced 
mixture of theoretical and empirical arguments. On the theoretical side, analytical 
intractabilty was controlled by decomposing or reducing the problem into a few special 
cases whose theoretical structure is well understood. Examples of such reductions are 



the well-known Traveling Salesman Problem, and the standard One-Machine Job Shop 
Scheduling Problem (French 1982). A significant level of confidence was achieved by- 
verifying that our algorithm performed as expected on such well-known special cases. 

On the empirical side, we developed a simulation package called THREATSIM to 
drive the DDTS algorithm with a wide variety of threat scenarios to fill the performance 
verification gaps left open by our theoretical approach. Designed to reveal the worst 
possible behavior of DDTS, THREATSIM is allowed to violate the laws of nature 
in order to produce synthetic threats that, although they will not be encountered 
in practice, may be used to "stress" the algorithm so that an adequate sensitivity 
assessment can be made. 

While our scheduling algorithm automates tasks conventionally performed by hu- 
mans, we have not recognized any benefits in applying concepts in Artificial Intelligence, 
Neural Nets, or Fuzzy Logic; therefore, we used only standard operation research and 
computer science methods. 

Program Contributions 

Contributions were made at two major levels during the three-year research period. 
At the conceptual level, we made significant improvements to scheduling technology by 
extending some conventional scheduling and network flow techniques to include stochas- 
tic and dynamic nodes and arcs. We thoroughly evaluated the DDTS algorithm, which 
is admittedly heuristic to some extent, by applying combinatorial complexity analysis 
techniques to important special cases. We also developed the THREATSIM algorithm 
to simulate a wide variety of threats and to reveal the behavior of DDTS in situa- 
tions not encompassed by theoretical methods. This evaluation process confirmed that 
DDTS performs very well and is robust to input and parameter perturbations. Using 
appropriate trajectory and scheduling predictions, the algorithm also produces smooth 
command streams, thereby significantly reducing platform component "jerking". 

At the applications level, we have developed, tested, and delivered to RL an efficient 
real-time target scheduling software package that optimally allocates the energy of 
a DE weapon by minimizing leakage risk during the boost phase and discrimination 
risk during the midcourse discrimination phase. With minor modifications, the DDTS 
algorithm can also be applied to many other resource allocation problems that may 
arise not only in strategic but also in tactical situations. Because the algorithm is 
strongly physics-based, it is also a sensitivity analysis tool with which the effects of 
parameter or input variations on the overall platform performance can be assessed. 
And with simulation drivers such as THREATSIM, DDTS may also be used as an 
end-to-end platform simulation structure. 



1.     Introduction 

1.1. Background 

The real-time allocation of weapon resources is operationally the most critical and 
computationally the most challenging battle management function on-board a weapons 
platform. On Directed Energy Weapon (DEW) platforms, this function requires the 
completion of three major tasks: 

1. Target Sequencing to determine the order in which targets 
must be prosecuted. 

2. Dwell Time Allocation to decide how long the DEW should 
dwell on any target. 

3. Target Rejection to select the targets that should be allowed 
to leak through. 

Collectively, these tasks constitute the Target Scheduling Problem (TSP). The purpose 
of this report is to present a solution to TSP for platforms designed to engage hundreds 
of targets during the boost-phase kill mission and thousands of objects during the 
midcourse discrimination mission (Fig. 1.1). 

As a special case of the general Weapon-Target Assignment (WTA) problem,* TSP 
has received much attention in the applied literature, where it is usually expressed as 
,a statistical decision problem and is thus solved as an optimization problem: This is 
also our approach, and we have chosen Expected Risk as our objective function for 
designing the target scheduler. In the boost phase, this is equivalent to minimizing the 
expected total value of the targets that leak through (Expected Leakage Risk), and in 
the midcourse discrimination phase it is roughly equivalent to minimizing the expected 
total value of the targets that are misidentified (Expected Misidentification Risk). When 
target values are all equal, these performance measures obviously reduce to the expected 
total quantity of targets that leak through or are misidentified, respectively. 

In spite of the valued work of others, one or more of the following target scheduling 
difficulties have been insufficiently addressed in previous studies: 

1. Deadline and Release Time (opportunity window) constraints. 

2. Random and time-varying variables and parameters. 

3. Uncertainties in target type and identification (ID). 

*  See Hosein and Athans (1990), Castanon et al. (1989a,b), Mealy and Megaloudis (1989). 

5 



-> 

4 
CU u 

s M o c o. «■I S c 
< •a 

s 

•o 

e 
E o u 
e o 
•3 
O 
e 

£ 

a 

a 
c 
o 
e o 
^ u 
e 

s 
I 
V 
M 
iS c 
I 
es 
£) 
"«8 
a 
'3 
c 
a. 

M 
C 

"3 

DC 
u 
es 
H 

4> 
U 
s 
M 

S 2 5 

ff  ä-l 



4. Dynamic predictions of future threat and platform states are 
required to achieve optimal energy and time allocation. 

5. Target values are unequal and may be uncertain. 

6. Threats may not be aggregated and must be processed as point- 
by-point allocations. 

7. When timelines are too tight to satisfactorily process all targets, 
some may have to be ignored or rejected. 

8. Bayesian priors on target types and on other essential random 
variables must be fused with observations to obtain best poste- 
rior estimates. 

9. Background and environmental noise processes must be consid- 
ered. 

10. Scheduling "horizons" must be denned to avoid scheduling tar- 
gets too far into the future, where state predictions are unreli- 
able. 

11. Dynamic insertion and deletion of targets on the scheduling 
"stack" must be allowed. 

Previous battle management discussions have also been too abstract for direct real- 
time application; therefore, proposed algorithms must be more physics-based. In se- 
quencing targets to meet deadlines, for instance, assuming a linear relationship between 
target completion (retarget plus dwell) times and their angular separations may lead to 
unacceptable errors. The settling times of the platform hardware must be considered, 
and various non-linear constraints on hardware positioning, slewing, and acceleration 
must be obeyed. Furthermore, target dwell times strongly depend upon the lethality 
of the DEW, the vulnerability of the targets, and the accuracy and stability of the 
beam control subsystem. Decision algorithms must therefore (1) include reasonable 
beam-target interaction models and (2) account for various Acquisition, Tracking, and 
Pointing (ATP) errors. All this may strongly influence the design or selection of the 
optimization algorithms, as it did on the program discussed in this report. 

At the theoretical level, similar shortcomings exist in the current literature, although 
two important special cases of our scheduling problem have received considerable at- 
tention. The first is the well-known Traveling Salesman Problem,* which applies to 
cases without time windows and where dwell times and retarget times are fixed. But 

* Lawler (1971); Lawler et al.   (1985); Norback and Love (1977); Flood (1956); Garey 
and Johnson (1979); Eddy (1977); Sedgewick (1988). 



even then a heuristic approach is needed (Laporte 1992) because the classical traveling 
salesman problem is itself Nondeterministic Polynomial (NP)-hard (Garey and Johnson 
1979). The second special case is known as the "One-Machine Job Scheduling Problem 
with Ready and Due Times"; this was solved in Kise et al. (1978) using the quantity of 
late ("tardy") jobs as an objective function, and with some mild ordering assumptions 
on the ready (release) times and deadlines. In the Kise study, no waiting or "transi- 
tion" times were allowed, all jobs had equal value, and all problem parameters were 
constants. 

In spite of recent formal efforts to mix both problems (Daniels 1990, Tsitsiklis 1992), 
we had no choice but to include several heuristic arguments in our scheduling approach. 
But heuristic arguments were used only to extend the well-known solutions of impor- 
tant special cases to our new problem, thereby providing considerable error control 
since our algorithms were designed to agree with others on those special cases. We 
completed a thorough review of other potentially useful methods to accomplish these 
extensions, including Artificial Intelligence, Neural Nets, and Fuzzy Logic, but we have 
not recognized any benefits in using such methods. Even though our algorithms are 
easily parallelizable, we have intentionally ignored hardware implementation issues. 

1.2.   The Boost Phase 

During this phase, the platform's primary mission is to destroy boosters to minimize 
the expected leakage risk, subject to opportunity window constraints. At regular in- 
tervals, the target scheduler receives threat updates from external platforms and from 
on-board sensors and monitors. For each interval, the scheduler must do the best it 
can with the information acquired during that interval; each interval is treated as a 
new phase in the scheduling process, even though information may remain valuable for 
several update intervals. 

1.3   The Midcourse Discrimination Phase 

During midcourse, target Re-entry Vehicles (RVs) will typically be surrounded by 
several decoys and replicas, thereby forming "clouds" of objects whose type must be 
resolved prior to allocating energy or dispatching interceptors. This discrimination 
function also involves a scheduling task much like that in the boost phase. In this 
task, a subtle tradeoff must be resolved between two risks, a classification risk and a 
rejection risk (Fig. 1.2). 

The classification risk is the total expected value of the target lost due to improper 
identification, and it is computed using conventional Bayesian classification methods. 
The Bayesian optimization approach is not bound by the strong and often impractical 
assumptions required to apply the notion of "k-factor", an approach still widely used 
in some sensor technologies (Holmes and Rocklin 1990; Rocklin and Tolleson 1986). 



Rejection 
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Figure 1.2. As interrogation time by the DEW increases, the classification risk decreases 
and the risk of target rejection increases. 

For each misidentified decoy or replica, we assume that only the cost of one intercep- 
tor or lethal energy dose is wasted, depending upon the midcourse interception mode 
assumed. We also assume that each misidentified RV leaks through. The rejection risk 
is the total expected value of the targets that are not processed by their due date. 

As target interrogation (dwell) time is increased, classification risk obviously de- 
creases and rejection risk increases because the time line is stretched out. The sum of 
both risks can thus be minimized by finding an optimal value r* of the interrogation 
time. 

Inputs to the platform include the dynamic state of cloud centroids, but not of 
individual cloud elements (RVs, decoys, replicas). The platform is thus expected to 
resolve each cloud into its contituent elements, but we have not included that function 
in our scheduling algorithm. 

Target interrogation is accomplished with a Neutral Partricle Beam (NPB), and 
target classification algorithms must include suitable beam-target interaction models 
and a neutral particle collection model for each of the deployed sensors. Although 
data fusion is an issue because we have a sensor network, we assume the simple fusion 
policy where the network output is equal to the particle count of the sensor whose 
signal-to-noise ratio is greatest. 



1.4   Report Structure 
Organizing this report was a very difficult task: our discussion spans many levels 

of discourse and there is considerable technical overlap among many of the issues ad- 
dressed in this program. We also lost track to some extent of exactly where the greatest 
amount of resources were expended throughout this three-year research program. In 
retrospect, it seemed that technical difficulties were so interdependent that, as soon as 
we thought a problem was laid to rest, it was resuscitated by new issues deferred earlier. 
This is a familiar situation when maximal efficiency is demanded from an algorithm, 
so we settled on the following organization. 

In Chapter 2 we lay the decision-theoretic foundations for our scheduling algorithm, 
and we carefully define the stochastic processes that describe the various measurement 
processes that drive the decision problem. We state what we mean by a "decision 
maker", and, after defining problem constraints, we present a precise discussion of 
the optimization issue. We then summarize our approach to solving the optimization 
problems for the boost and midcourse phases. 

In Chapter 3 we focus on the boost phase, and we go deeper into the structure of the 
scheduling algorithms. Drawing from the traveling-salesman literature, we show how 
optimal tours are constructed and improved as needed, how targets are rejected when 
necessary, and how optimal dwell times are derived. In Chapter 4, the boost phase 
Deadline-Driven Target Scheduling (DDTS) algorithm is translated into software. We 
describe in detail how the running time of DDTS is minimized by employing efficient 
sorting and searching techniques, and we also discuss the tour construction software in 
detail. We conclude by including an important extension from space-based platforms 
to ground-based DEWs. 

We address the midcourse discrimination phase in Chapter 5. Since the basic schedul- 
ing issue is similar to that in the boost phase, we concentrate on the inner optimization 
loop concerned with Target Classification, which we address using Bayesian classifiers, 
as we discussed earlier. We especially emphasize the physical processes assocated with 
NPB target interrogation, and we carefully account for the various processes that con- 
tribute to the total particle count at each NPB sensor. We conclude Chapter 5 with 
a detailed account of how cloud dwell times and retarget times are calculated for two 
major cloud distributions consisting of RVs, replicas, and decoys. 

In Chapter 6 we report our testing work with DDTS. We start with a description of 
THREATSIM, a threat simulator designed to drive DDTS as an end-to-end platform 
simulator. We briefly interpret each of eight major tests conducted with the algorithm. 
We close the report with Chapter 7, where we present some conclusions from this 
extended research program and outline some promising directions for future research. 
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2.   Target Scheduling: 
A Statistical Decision Problem 

The principal purpose of a target scheduling algorithm is to decide, within specific 
time and resource constraints, in what order a collection of dynamic and probabilistic 
targets should be processed and how many resources should be allocated to each target 
so that the risk of target leakage is minimized. In such general terms, the Target 
Scheduling Problem (TSP) appears as just another statistical decision problem. As 
we suggested in Chapter 1, however, a closer inspection reveals a problem fraught 
with complications that have persistently resisted the direct application of existing 
decision-theoretic and optimization methods. These difficulties are sufficiently subtle 
and pernicious to render essential a careful definition of the TSP before they can be 
understood. A clear articulation of the issues is also essential for the recognition of 
familiar problems and the application of past and current work of others. We also 
found a decision-theoretic formulation of the TSP very useful in obtaining an effective 
model that reveals the real-time computational challenges lurking in the background. 

In this chapter we do the following. We start by stating what we mean by a "sta- 
tistical decision problem", and we carefully describe the canonical elements of such a 
problem. Then we define the TSP by providing the required physical and geometric in- 
terpretation for the canonical elements. We originally intended to provide a discussion 
of the decision problem that does not distinguish between the Boost Phase mission and 
the Midcourse mission in order to concentrate on principles and methodology, but such 
a generic treatment would have been too abstract. There are important conceptual and 
operational differences between the two missions, so we chose instead to emphasize the 
boost phase in this chapter, although several excursions into the Midcourse problem 
are made whenever conceptual differences prevented a boost phase interpretation. 

To adequately capture the dynamics and statistics of the TSP and to reflect our com- 
puter implementation approach, we use the general framework of stochastic processes 
(Breiman 1968, Chung 1974) to describe the decision problem and all its ingredients. 

2.1 Statistical Decision Theory: Some Definitions 

Consider a stochastic observation process X = (Xi,... ,Xi,... ,Xn) consisting of 
n random observation variables Xi,i = l,...,n, whose underlying probability space 
(Breiman 1968, Chung 1974) is PQ =< Q,B,P >. Each Xi is a ß-measurable function 
from 0, to R which produces an observation -X,-(w) = x when the true state of nature is 
u. Whenever an event A £ B occurs, an event Xi (A) is observed by Xi with probability 
P{A). 
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Next consider an action space A and a decision maker DM =< d,L > who chooses 
an action d(x) £ A whenever he observes Xi(u) = x £ R, and incurs a loss L(UJ, d(x)) 
whenever he completes that action. A rational criterion (Berger 1980) for choosing that 
course of action is the expected risk 

71(d) = EP(L(u,d(x))), (2.1) 

the expected value of the loss function L(u>,d(x)) with respect to the probability- 
measure P and the decision function d : R —> A. In dynamical problems such as 
the TSP, a realization viewpoint (Breiman 1968) is often useful where the index set 
7={l,...,i,...,n}isa discrete time scale and, for each u> £ fi, the sequence of ob- 
servations (-X"I(ü;), ... X,-(ü;), ... Xn(u)) is considered a function of time i, with u held 
fixed. This function, denoted by X(u>), is a realization of the stochastic process X. 
Whenever a decision maker chooses a course of action on the basis of the realizations 
X(u) of X, he is called a sequential decision maker, and the decision rule d is a function 
d: XR —» A from the set XR of realizations of X into the action space A, taking each 
xn € XR into an action d(xn) £ A. This situation is captured by the following: 

Definition 

An instance of a statistical decision problem* is a fourtuple 

ISDP =< X, DM, F,1Z> (2.2) 

where: 

A'   is a stochastic observation process on a probability space PQ =< fi, B, P >, 

with realizations X   . 

DM  a decision maker with decision function d : X    —* A and loss function 
L : Q, x A —> C, the loss space. 

F  is the set of feasible decision functions (Papadimitriou and Steiglitz 1982). 
71 is a risk function (objective function) which maps the loss function L, 

observation process X, decision function d, and probability space PQ into 
a decision risk1Z(L,d,X,PQ). 

The basic objective in a statistical decision problem is to choose a feasible course of 
action d £ F which minimizes the risk 71. In this report, we confine our attention to 
situations where 71 is the expected risk as expressed in Eq. (2.1). 

Given a collection of problem instances, one for each d £ F, a statistical decision 
problem is an optimization problem: 

* Papadimitriou and Steiglitz (1982); Ferguson (1967); Berger (1980). 
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Definition 

Consider a collection of feasible instances {ISDPd : deF}. The statistical decision 
■problem is to find a decision rule d* G F such that 

7l(L,d*,X,PQ) = min{n(L,d,X,PpJ} = 7V . (2.3) 
deF 

This is the minimum risk, and d* is called a solution to the decision problem. 

When no specific choice of X, DM, F, or Tt is intended, and to simplify notation, 
we shall occasionally refer to the fourtuple < X, DM, F, Tt > as the decision problem, 
with the understanding that the optimization process described in Eq. (2.3) is implicitly 
included. 

2.2    A Definition of the Target Scheduling Problem (TSP) 

The abstract definitions in the previous section were useful in providing a concep- 
tual interpretation of the TSP as a canonical decision problem. But the causes and 
consequences of scheduling decisions can be properly understood only if an appropriate 
physical and geometric interpretation is assigned to each element of the canonical prob- 
lem. Such an interpretation is developed in this section. First, we define the elements 
of the TSP; then we state the optimization problem. 

2.2.1. Principal Elements of the TSP 

Recall the definition of a statistical decision problem instantiation (Eq. (2.2)): 

ISDP =< X,DM,F,Ti> (2.4) 

In the TSP, the decision maker observes the stochastic states of the targets, the sensors, 
the DEW, and the environment via a process X whose underlying probability space 
PQ describes all the uncertainties that corrupt this observation process. 

The "decision maker" DM =< d,L > has a sequential decision rule (Berger 1980) 
which generates various decisions and commands from the observation process X. The 
rule specifies the order in which targets are prosecuted and the time and energy allo- 
cated to each target, and then selects those targets which must be ignored. The rule 
also produces position commands to the system controlling the platform main body, the 
forebody, and the fast steering subsystem. The resulting actions incur a loss specified 
by the loss function L, which accounts for the different values of individual targets that 
leak through because of missed deadlines, ATP errors, or insufficient DEW lethality. 

The constraint or feasibility set F is determined by a constraint on d which prohibits 
(1) scheduling targets before their release time or after their deadline and (2) exceeding 
resource limits. Constraints are implicitly defined by deadlines, release times, energy 
limits, a target completion time function, and an energy consumption function. 
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In this report, risk is defined as the expected value (E) of a loss function (L) with 
respect to the probability of leakage Pi of each target, usually formalized as a risk 
criterion H =< L,Pi,E >. For both the boost and the midcourse phase, explicit 
forms for the expected risk will be derived in the appropriate sections. 

This interpretation, together with the earlier canonical definition, motivate the fol- 
lowing representation. 

Definition 

The Target Scheduling Problem (TSP) is a statistical decision problem 

TSP =< X, DM, F,H> (2.5) 

whose elements are given in the following subsections of Section 2.2.1. 

2.2.1.1. The Observation Process X. Four physical processes are observed 
by the decision maker to arrive at scheduling decisions: the targets, the sensors, the 
environment, and the DEW platform itself. The decision maker's measurement process 
is thus a function of four subprocesses: 

X = X(XT,XD,XE,XS) (2.6) 

where 
XT  is the target process. 
Xj)  is the weapons platform process. 
XE  is the environment process. 
X$  is the sensor process. 

As we shall see below, these processes are characterized by states and parameters. 
We assume that the decision maker must infer all parametric information from state 
measurements or from prior knowledge. 

2.2.1.1.1. The Target Process A/r. Consider a set of targets S = {Ti : 
i G I}, where I is some (ordered) index set of size (cardinality) \ I \. The ordering 
on I induces an ordering on S, producing an ordered target set T =< Ti : i G i" > 
of | 7 | targets, also called a target sequence. Whenever we refer to a "target set" in 
this report, we shall tacitly assume that this set is ordered by some index set I, or a 
permutation thereof. 

The target process is a collection Xj = {X{ : i = 1,..., | 11} of individual target 
processes Xi, one for each Ti G T. 

Each target process is itself a random process defined by a random parameter vector 
and a random state vector, as follows: 
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Definition 
Xi =< *J{QnW)^T\h\Ql{t,J)XpT > (2.7) 

where: 
t  is the time variable. 

PQ is a probability space < QT, BT, P   >. 
UJ

T
 £ÜT is a sample value from the sample space ft  .. 

BT is a (7-algebra of events from ft  . 
PT is a probability measure on BT. 

Qf(t,cjT)  is the state  of Ti at time t when the state of nature  is 
T 

wf(Qf (t, coT),t, wT)  is the value at time t of the "parameter vector of Ti when 
the state is Qj(t,uT) and the state of nature is or. 

hT(Q?(t,uT))  is a function representing the observation of the state 

(Ql(t,"T))- 
Informally, each target Ti is a probabilistic object whose underlying uncertainties 

are captured by Pfi, whose description is parametrized by irf, and whose dynamic 
state Qj is observed through sensors h. The parameter vector 7rf (•) typically contains 
parametric information about the target's hardness, vulnerability, and type. 

The dynamic state of a target T; is predicted At seconds into the future from 
some initial handover time io (initialization time) by assuming that Ti travels along 
a straight line or along a constant-radius circle centered at the earth. We thus as- 
sume a simple first-order dynamical model where the future position Xj(tQ + At) in 
earth-centered coordinates (indicated by subscript E) is extrapolated from the initial 
position (xEfi, y£0, zBfi) and velocity (xEfi,yEfi,Z£0) as follows (superscript T omitted): 

If the angular position of the target in the earth-centered spherical coordinate system 
of Fig. 2.1 is (0E(*O), <f>E(to)) at time to, then at time t = to + Ai, 

and 

where 

eE(t) = eE(t0) + eE(t0)At 

Mt) = Mio) + J>E(to)At (2.8) 

9E(to) = tan-1 (^) , 
XB,0 

Zr _1   I   E,0 
<j>E(t0) = cos     I- ■ -^1, 

V((^o)2 + (^>0)
2 + (^o)2) 
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]>E(to) 

g,o",E,0       ",E,0   E,0 j 

w2+w2 ' 
/ 1 ZEfi (XE,0XE,0 ~^~ ^B.O ^£,0 "*" ZE,Q ZE,0> 

((*,„)2 + GW2)1/2A   Ko)2 + M2+(v)2 — z. 
Efi 

The derivation of Eq. (2.8) is straightforward, and it can be found in Appendix A. 

^E 

Figure 2.1. Transformation to spherical coordinates. 

In rectangular earth-centered coordinates, the predicted target position at t = to + 

AT is then XE{t) = (xE(t), yE(t), zE(tf), where 

and where 

xE(t0 + AT) = xE(t) = PE cos 6E(t) sin <f)E(t) 

yE(t0 + AT) = yE(t) = PE sin 9E(t) sin^(t) , 

zE(t0 + AT) = zE{t) - PE cos 4>E(t), 

1/2 

(2.9) 

(^)2 + (y£)2 + (^)2J     • 
Expressing this new position in platform coordinates indicated by subscript P, 

XP(t) = R(XE(t) - DE(t)) (2.10) 

where DE(t) is the new platform position at t = to + At, and R is the rotation matrix 
relating the platform coordinates to the earth-centered coordinate system. 
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2.2.1.1.2. The DEW Platform Process XD. Similar to targets T„ the 
DEW platform is a stochastic process modeled by the triple 

Xv=<7rD(QD(t,u;%t,uD),hD(QD(t,uJ
D)),Pg)> (2.11) 

where the interpretation of irD, hD, and Pg is analogous to that for each T;. 

The future platform position XD(t0 + At) At seconds into the future is estimated 
in earth coordinates, as for targets T{ (subscript E omitted and w held fixed): 

XD(t0 + At) = (xD(tQ + At), yD(t0 + At), zD(t0 + At)) 

where 

xD(t0 + At) = pD cos 9D(t0 + At) sin <f>D(t0 + At) . 

yD(t0 + At) = pD sin 6D(t0 + At) sin <j>D(t0 + At) . 

zD(t0 + At) = pD cos <f>D(t0 + At) . 

6D(t0 + At) = eD(t0) + ÖD(to)At. 
^(to + At) = ^(t0) + ^(to)At (2.12). 

As discussed in later chapters, the parameter vector 7r-D(«) of a platform typically 
contains a parametrized description of the platform power, bias, jitter, beamwidth, 
and DEW wavelength. 

2.2.1.1.3. The Environment Process X^. The physical environment for 
an engagement is described by an underlying probability space and a random parameter 
vector, as follows: 

XE =< *E(QE(t, «£)), hE(QE(t, uE)), Pg >, (2.13) 

where 

Pg =(ClE,BE,PE), 

QE(t,uJE) is the 5tate of the environment at time t, when the state of nature is wp, 
and 

hE represents the measurement of the environmental state. 

The "environment" typically specifies ambient conditions which influence the out- 
come of engagements, but which cannot be directly attributed to targets or platforms. 
"Environment" typically includes descriptions of ambient noise, light levels, and back- 
ground. 

As a good example relevant to midcourse discrimination using particle beams, con- 
sider the random particle background count observed by some sensor in space. Then 
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PQ could represent the particle generation process and TT£ could be the expected par- 
ticle count at some specific location in space, at the sensor for instance. (See Chapter 5 
for a more specific discussion). 

2.2.1.1.4. The Sensor Process Xs. Similar to the target process Xj, Xs is 
a collection {Sj : j = 1,..., | J |} of sensor processes Sj, each described by a random 
parameter vector and a random state vector, as follows: 

Sj =< *f(Q?(t,us),t,us), hs(Q?(t,us), P^ > , (2.14) 

where: 

t  is time. 
Qj(t, u>' )   is the state of Sj at time t when the state of nature is u> . 

iTj(Qj(t,uj),t,(jj)  is the value at time t of the parameter vector of Sj when 
the state of Sj is Qj(t,ojs) and the state of nature is ur. 

hs(Qj(t,ujs))  is a function representing the observation of the state 
Qj(t,u■  ), typically its expected value at time t. 

PQ =< Q,  , B  , P   >   is the probability space underlying the parameter vector 
and state of 5";. 

In contrast to targets and platforms, which may be viewed as point masses since their 
orientation is not a critical issue in our analysis (except for their aspect angle 9), 
sensors require a higher-dimensional representation. The major reason is that sensors 
are typically directional, and they also experience precessions, rotations, and tumbles 
as they move through space. We use 12 degrees of freedom to represent the state of 
sensors (see Fig. 2.2): 

QS =< Xf, XS
E; a

s, ßs, 7
S; äs, ßs, 7* > , (2.15) 

where: 

Xß  is the sensor position in earth coordinates. 

Xg  is the sensor velocity in earth coordinates. 

ctg and ä^   are the rotation and the rotation rate of the sensor about the z -axis, 
respectively. 

ßg and $s   are the rotation and rotation rate about ys, respectively. 

7^ and 7^   are the rotation and rotation rate about xs, respectively. 

The angular position state of the sensor is thus (a|, /?|, 75) and the rotation rate 

is (äf , ß§, j§). 
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Figure 2.2. The sensor coordinate system (xs, ys, zs) is a translation of the earth-centered 
coordinate system (xg, Vß, Z

E) by tne displacement vector Xg- 

When the state of a sensor At seconds into the future is needed, we proceed as before 
for the position state Xg of the sensor. For the rotation state, analogously, 

af (to + At) = af (to) + At a|(i0) . 

/?f(t0 + At) = /?f(t0) + At/3f(to). 

7f (to + At) = 7f (t0) + At Tf (t0) . (2.16) 

The sensor parameter TC
S
 of Eq. (2.14) has four principal components: 

K
S
 =<FOV,T),AD,TD >, (2.17) 

where 

FOV is the sensor field of view, FOV =< es, 9s-, 4>S >• 
es is the sensing direction (unit vector). 

rj is the detector conversion factor (electrons/particle). 
<j>S is the sensor elevation angle. 
9s is the sensing angle (spherical). 

AD is the effective detector area. 
Tr) is the detector response time. 

2.2.1.1.5. The Overall Measurement Process X. The DEW platform 
collects information from on-board and external sensors at sequential times {tj. : k = 
1,2,...} determined by a given update rate. At any such time tfc, the decision maker 
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DM receives state summaries from trackers and sensors via the measurement functions 
hT, hs, hD, and hE. In this report, the first three functions produce mean and variance 
estimates of the positions and velocities of targets, sensors, and the DEW platform, 
and hE generates the mean and variance of the background and environmental noise 
processes. The overall measurement process of Eq.(2.6) is thus simply a vector process 

X(XT,XD,XE,XS) = [M,*T) :t = l,...,|J|}, 

(^,aD)^E,aE),{(»l°f) :i = l,-..,|J|}] , (2.18) 

where 2* was conveniently omitted, and the meaning of symbols is obvious. 

2.2.1.2. The Decision Maker DM. In this report, a decision maker is a pair 
DM =< d,L> where d is a decision rule that maps realizations X(u>) of the observa- 
tion process XR into actions a £ A, and L is a loss function that assigns to each action 
a and state of nature cv 6 0, a (random) cost or loss L(LJ, a) = c € C. Referring to the 
observation process X described in Section 2.2.1.1, we assume that the decision maker 
must infer all information about the parametric structure of targets, sensors, and the 
environment exclusively from state measurements or from prior knowledge. 

2.2.1.2.1. The Decision Rule d. Each action taken by the decision maker 
specifies a target sequence, an allocation of dwell time and dwell energy, targets to 
be rejected or ignored, and other platform commands discussed earlier. For both the 
midcourse and the boost phase, the decision rule d is a complex algorithm that has no 
succinct mathematical representation. As we describe in later sections, target sequences 
are chosen by first ordering targets in accordance with their deadlines and release times, 
earliest deadlines first. If a sequence is not optimal, correction methods are applied 
until an optimal sequence is found or until a maximum computational time limit is 
reached. 

During the boost phase, dwell times are obtained from leakage probabilities computed 
in an outer optimization loop, each probability providing a unique target dwell time. 

When all deadlines cannot be met or under certain conditions where time lines must 
be shortened, some targets may have to be rejected or ignored. This is accomplished 
by applying a rejection criterion discussed in detail in Section 3.2.1. 

As a matter of notation, sequences are viewed as permutations (reorderings) of some 
index set (Loomis and Sternberg 1968). Consider the set II = {TT : I —* 1} of all 
permutations of the index set I. A permutation -K G II reorders the index set I in such 
a way that index -K {%) is placed in position i, and K~l{j) is the index which was in 
the jth position prior to the permutation operation. More generally, consider a job or 
target sequence T(/) =< Ti,..., T,-,..., T\j\ >. Then the application of permutation -K 

to I produces the reordered sequence 

T-ir(I) =< Tx{1),... ,T„(0,... ,TX(|7|) > , (2.19) 

20 



which we denote by TT, and where 

Tvn\   is the target in the first position after permutation, 
Tw,)   is the target in the zth position after permutation, 

TTnn\   is the target in the | I |th position after permutation, and 
T  is the function assigning names or labels to the indices in TT(I). 

Similarly, we denote by TT-itj\ the target which was in the 7th position prior to the 
permutation operation. 

When some targets are rejected in accordance with some rejection criterion, only 
a subsequence of targets is prosecuted, and an order-preserving subsequence mapping 
r : I —> I' C I is induced on I (Apostol 1974). This mapping takes any sequence into 
a subsequence < sr^,..., «SVfl/'D >• The new target sequence is thus 

r.7r.r(j) =< rT(r(1)),..., TT(T{im > . (2.20) 

We shall denote subsequences of TT by T£ unless the rejection criterion must be explic- 
itly included, in which case we denote them by Tv.r. We also denote a set of rejected 
targets by % and its index set by IT. 

With this notation, we can now succinctly describe each action of the decision maker 
as a triple 

a=<ir,tD,Ir>, (2.21) 

where 
■K  specifies the sequence chosen by DM, 

tD   specifies the dwell times for all targets, and 
Ir   specifies the set of targets rejected by DM. 

2.2.1.2.2. The Loss Function L. When the environment of an engagement 
is described by a "state of nature" u> € Q,, each action a G A incurs a random loss 
L(u,a) € C Losses are thus random variables because they depend upon random 
engagement conditions. 

But the losses also depend upon when they are incurred, and they are therefore also 
sequence-dependent. If a deadline is missed, for instance, a target may have to be 
ignored, so the earlier a target can be processed, usually the better. But if a target 
is scheduled too early, its release time may be violated, and additional losses may 
arise. Also, the probability of neutralizing a target depends on when the target is 
engaged. In some cases, waiting for a target may even improve weapon performance. 
Considering that the evaluation of leakage risk requires that losses be multiplied by 
their probability of occurrence on a target-by-target basis, respecting the order in which 
losses are incurred is essential, and losses must be expressed as sequences of losses. 

As outlined earlier, each action a € A and state of nature u> € 0 result in a set 
% = {Tx(,) :   i 6 IT} of rejected targets and in a set Tm = (Tx(,) :   i € Im} of missed 
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targets. Observe that this is not a probabilistic statement: the specific action and state 
of nature together cause % and Tm for sure. To find the probabilities that targets are 
either rejected or missed, we need to know the distribution of the states of nature, and 
these are discussed later when miss probabilities (pM) are derived. 

To define the sequential loss function L, we associate with each target T,- € T a fixed 
value 

Vi = V(Tt) = aiV°(Ti) € V (2.22) 
where 

V°(Ti)  is the intrinsic value of T{. 
ai  is the deadline hardness of Tj. 
V  is the value space. 

Accordingly, if Ir and Im are the (ordered) index sets of % and Tm, respectively, the 
loss function produces, for each state-action pair (u>, a), a loss subsequence, 

£(w, a) =< Vx{i) : i € Jr(w, a) U Im(a;, a) >, (2.23) 

indicating the order in which rejection losses (Jr) and miss losses (Im) are incurred. 

Expressed as a full sequence with |7| terms, 

L(u,,a)=<yT(t);t;yu;,a):  i = 1,..., 11\> , (2.24) 

where 
^X    _fl,    »G/r(w,a)U/m(w,o)l 

""(')     \ 0,    otherwise J 

In Sections 2.2.1 A and 2.2., this loss function will be combined with the probabilities 
on IT, I LI and V^u) to obtain an expression for the overall risk. 

2.2.1.3. The Feasible Set F. In complex problems such as the TSP there is 
no convenient closed-form definition of the feasible set F. Usually, a test function is 
defined, together with a feasible region. A solution is then feasible if the value of the 
test function for that solution falls in the feasibility region. 

Two major constraints are considered in this report—time constraints and resource 
constraints—and their test functions are called the target completion time function (fc) 
and the energy consumption function (/#), respectively. Accordingly, we represent the 
feasibility of TSP as a fourtuple: 

F=<CT,fc;CEJE>, (2.25) 

where 
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CT is the deadline and release time constraint, 
fc is the target completion time function, 
CE is the resource (energy) constraint, and 
fß is the energy consumption function. 

2.2.1.3.1. Time Constraints (CT,fc)- Two time constraints define a 
window of opportunity during which a target must be addressed. First, targets may 
not be processed before they are "available". A target may be unavailable, for instance, 
before breaking through a cloud cover. The battle manager may have several additional 
reasons why a given target should not be addressed by a platform prior to some time. 
Second, targets must be processed by a given time called the deadline. 

Mathematically, these time constraints can be simply stated as a 

completion constraint:   tc^i) < ^(i),   i'■ = 1, • • • > \I\ > &&& a (2.26) 

release constraint :   <CT(«) 
— *x(i) — r:r(0, (2.27) 

where dx(t) is the deadline for target T^), and rx(l) is its release time. Observe that 
the release constraint is implicitly included in the expression for completion time (see 
Eq. (2.30)). 

Given the definition of sequences and permutations presented earlier, the target 
completion time function is a mapping 

fc : T x n x R+ x R+ -> R+ (2.28) 

that assigns to each target T; € T, permutation TT € II, dwell time tD € R+, and release 
time r G R+ a completion time /c(T,-,7r, t   , r). 

Note that completion times also implicitly depend upon the platform V, the envi- 
ronment £, and the sensor set S. We defer to later chapters the explicit derivation of 
this dependence; in this chapter we limit our discussion to the situation where T>, £, 
and S are assumed fixed. 

Consider now the ordered set of completion times CTW —< *CJr(i), •■-,*«[■(«')>•••' 
tCTnm >, where iOT(,) is the completion time of target T^ under permutation TT. 

Then fc is a recursive function defined as follows for all TT € II: 

*«r(i) = /c(*cx(i), *) = r7r(i) + *f(i) ' (2-29) 

where 

rTn\  is the release (availability) time of the first target TT^, and 
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^fm   *s *^e dwell ^me °f the firs* target Tv^y 

Inductively: for i = 1,2,..., | i" |, 

*«r(i) = /C(*X(I>T) 

={»-,(.-),*«r(i-i)+<5:o}+*?(0' (2-3°) = max 

where 

rTti\ is the release time of target Tvuy 

i^/-s is the retarget time from TT^_u to T^ 

tCv(i-i) 1S the completion time of Tx(,_i). 

i^/s   is the dwell time of TT^y 

Note how release times can determine completion times: regardless of the completion 
time of the previous target and the retarget time to the current target, processing of 
the current target may not start until it is ready or available. 

The calculation of dwell times tQ^ depends upon physical parameters and variables 
that are discussed in a later section; retarget time computation is discussed next. 

2.2.1.3.1.1. Retarget Times. The retarget time t^U from Target Tvu_^\ to Tar- 
get Tvu\ is determined by the state of the two targets at the completion time tcx(,_i) of 
^V(»-i) and by the dynamical properties of the DEW retargeting hardware. A typical 
retarget timeline is shown in Fig. 2.3 where a familiar second-order behavior of the 
platform hardware is portrayed. 

In response to an angular retarget step input u(t), the time required to settle to 
within e of the location of Tvu\ is 

jr(t') =   sa*   '  ^react T *rise   i   Tstt ■> (z.olj 

where the meaning of the variables is obvious (Kuo 1975). More conventionally, 

t-x(i) — tsat + tset 5 (2.32) 
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C(t) 

>- timet 

Figure 2.3.  Second-order non-linear approach to estimating DEW retarget time showing 

unit STEP response time. 

where 

tSat   is the saturation time, and tsat = 
u (t) - uii7, 

Cmax 

Cmax   is the maximum slew rate, 
u\in   is the maximum input before the onset of saturation, i.e., the maximum 

linear response input, 
,.       • , \He)\ 

tset  is the settling time and tset = 
O-UJT 

8  is the damping constant, and 
u)n   is the critical frequency. 

More compactly, 

D    _ max{u-uun,0}      \ ln(e) \ 

*M Cm.a.T. crun 

(2.33) 

A slight comphcation arises due to the fact that a DEW is a composite structure 
consisting of three major mechanical components: the main body (MB), the forebody 
(FB), and the fast steering (FS) subsystem. When angular displacement commands 
are sufficiently large, all three subsystems may have to be slewed, and the retarget time 
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is then also a composite function 

R -~-{*W *?**■)*(*-*T)' «W^C*- e-T)l    (2-34) C(i)=ma:r 

where 

^PS^O' *?3*(t)> *£sx(i)   axe the fast steerinS> forebody, and main body retarget 
times derived as in Fig. 2.3, 

0,   is the angular distance from Tff(,-_i) to T„.(,), and 

ö£fx, 0£fx  are the maximum displacements of the fast steering and 
forebody subsystems, respectively. 

The step function U(x) is important here since no forebody or mainbody slew is re- 
quired unless the input command 0; exceeds the fast steering (respectively the forebody) 
motion limits. 

Considering that all the targets are moving and that a scheduling algorithm must 
estimate the state of targets some time far into the future, the computation of the 
angular separation Q{ deserves further comment. Referring to Fig. 2.4 where a DEW 
platform D is located at position DE - (DE,X, DEtV, DEjZ) in an earth-centered 
coordinate system (xE, yE, zE) as shown, the angular separation between T,_i and T; 
in platform coordinates (xp, yp, zp) is 

*=cos_i (n/'-'ii'fy n) -cos" (wv).    (2-») VII Xi-l,P \\\\Xi,P 11/ v ' 
where e,_i p and e^p are the corresponding unit vectors. Relating this to the earth- 
centered coordinate system, 

Xi-u = R(Xi,E - DE), (2-36) 

where 
R  is the rotation matrix from earth to platform coordinates, 

Xi E  is the position of Ti in earth coordinates, and 
DE  is the position of D in earth coordinates, 

and similarly for Ti-i. 

In practice, we use the distance ef = ef^ — ef as a guide to estimate 0;, and we 
define 

, II 4 II rad ,   || ef ||< 0.1745 
6i = { . (2.37) 

cos-^e/Lj'e/Vad    ,   || ef ||> 0.1745 
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>x, 

Figure 2.4.   Computing the angular separation 0, between targets T,_i and T, in earth 

coordinates. 

To predict the position of a target At time units into the future from some reference 
time to (initiation or handover time), we extrapolate initial positions (xo, yo, ^o) and 
initial velocities (x0, yo, io) along a straight line trajectory or along a constant-radius 
circle centered at the earth, as discussed in Section 2.2.1.1. 

2.2.1.3.1.2. Dwell Times tD. The target interaction physics from which dwell 
times are derived are very phase-dependent since the interaction mechanisms involved 
in the boost phase differ significantly from those in the midcourse phase. Generalization 
is thus not very useful, and we defer to Chapters 3 and 5 any detailed derivations of 
dwell times for the boost phase and the midcourse discrimination phase, respectively. 
An important fact used in the remainder of this chapter, however, is that there is 
one-to-one relationship between dwell times and miss probabilities (nondiscrimination 
probabilities in the midcourse phase), so that, once miss probr bilities (pM) are specified, 
dwell times are uniquely determined. 

2.2.1.3.2. Resource Constraints (CE, /#). Various limited resources are 
consumed by a platform during an engagement, and a careful resource management 
strategy must be included in the target scheduling algorithm to avoid reaching resource 
limits at mission-critical times. To accomplish this, we use a local resource consumption 
function 

E° :TxUxR+ -* R+ (2.38) 

27 



which assigns to each target T; € T, permutation n g II, and dwell time tf € R+, the 
quantity of energy E°(Ti, 7r,t; ) consumed during the retargeting from Tx(i_i) to T„.(,) 
and during the dwell time tf on target TU,-). 

The total consumption of resources is recursively described by the cumulative re- 
source function 

/ft = 53JB°(Ti,7r,<f), (2.39) 

recursively defined by 

fEt=fEi-1+B?(Tj, 7T, tf) 

^fE^+E^t^ + E0^), (2.40) 

where 

E  (iff,-))  is the quantity of resources consumed during retargeting time t^uy 

E   (t^..A   is the quantity of resources consumed during dwell time t^,^ 

The energy constraint is now simply: 

For all t = 1,..., 11\,   fEi < Emax , (2.41) 

where Emax is the total amount of resources available. 

2.2.1.4. The Optimization Criterion H. "Expected risk" has been found in 
practice to best reflect the degree and uncertainty of loss in complex large-scale decision 
problems not dominated by rare events (Ferguson 1967, Berger 1980). As we mentioned 
in Section 2.2.1, risk may be denned using an optimization criterion 

H =< L,VL,Z E > , (2.42) 

where 

L  is the loss function. 
Vl  is the leakage •probability function. 

£ E is the summation-expection composition operator on C, producing for each loss 
sequence L(w, a) € £, the sum of all the expected rejection and miss losses 
associated with the terms of the sequence with respect to the probability 4 
measure VL- 

The loss function (L) was defined earlier in Section 2.2.1.2.2. The probability that 
a target leaks through (VL) is essentially determined by the lethality of the DEW, the 
hardness of the target, the environment and time of the engagement, the probability 
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that the target is correctly identified, the dwell time allocated to the target, and dead- 
line constraints. As before, we assume that the DEW (D), the environment (E), the 
sensors (5), and the constraints (C) are fixed during a single target scheduling cycle, 
and all probability assertions and calculations are thus conditional to D, E, S, and C. 

We assume that a target leaks through if, and only if, it is rejected (ignored) by 
the target scheduler, or it is missed by the DEW, or it is misidentified. The physical 
conditions that give rise to these three forms of leakage are represented in the same 
space ti (states of nature) discussed in Sections 2.1 and 2.2.1.1. The probability of 
leakage p depends upon these three leakage modes as follows. 

Let TO, R, and M stand for target misclassification, rejection, and miss, respectively. 
Then 

pL = prob (W V RV M) 

= 1 - prob (ID AR A M) 

= 1 - prob (M \IDAR)pvob (ID)prob(R) 

= i" (PF) \IDAR)PIDPR (2-43) 

where pjf = prob (M), pID = prob (ID), and pj = prob(Ä). 

To separate the contributions to pL made by the miss probability pM and the rejection 
probability pR, Eq. (2.43) may be rewritten as 

h = PR + i1 ~ (PS \JD>io\ PR ■ (2-44) 

Equation (2.43) shows that a target leaks through if, and only if, it is rejected, 
misidentified, or missed when it is correctly identified and not rejected. 

The target ID probability p is derived from a Bayesian classification process that 
will be discussed in a future report (Corynen 1993). Because target rejection is a 
complex heuristic optimization process, no analytical expression for the rejection prob- 
ability p  can be derived. 

The conditional miss probability (pM |j£,A^) is obtained from a statistical comparison 
between weapon lethality and target hardness, as follows: 

PM(TT(I)) = prob (tfx(0(e£w, t„(0> "T) > HQD,tc^ "Di *?(.•))) ' (2-45) 

where 
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Hvtj\   is the hardness of target T^u) whose state is Q^a) at completion time £C7r(;), 

when the random state of nature (environment) of the target is w  . 
L  is the lethality of the weapons platform D whose state is Q    at time tcx(,), 

when the dwell time is tQ* and the platform state of nature is uD. 

Using Eq. (2.44), we may summarize all this in terms of a general objective function, 
as follows: 

The total leakage risk is 

\I\ \I\ \I\ 

RL = J2 
y*u = E v**i+E Vi I1 - (PU \iDpiDi H- 

»=i       »=i       «=i 

= Kr + Tlm (2.46) 

where 
M 

7lr   is the rejection risk, and 7Zr = )>    ViPRt > 
i=l 

w 
7£m is the miss risk, and 7£m = J^ V;[l - {pjj |/Z).)p/Z)Jpß., 

i=l 

Li   is the loss incurred if Target i leaks through, and 
pi{  is the probability that Target i leaks through. 

The expected scheduling leakage risk can now be expressed more explicitly as the 
sum of a rejection risk 1ZT, an identification risk HID-, 

and a miss risk Tim, as follows. 
Let Ri be the event "Target Ti is rejected," Ri its complement, and let p(L{ \E) be 
the probability that Target Ti leaks through condititional to the occurrence of event 
E. Then the expected loss for a single target T; is 

Lip(Li) = LiP(Li taM-Ri) + Lip{Li I^Xä,-) 

= Lip(Ri) + Lip{Mi)p(Ri), (2.47) 

where p(Mt) = p(Li \-s.), the probability that Ti is missed if its interception is at- 
tempted. This probability will also be called the miss probability. 

Successful target interception strongly depends upon the target identification power 
of the sensors observing an engagement. While target rejection is assumed unaffected 
by the ID process, we assume that incorrectly identified targets leak through. If IDi 
is the event "Target Ti is correctly identified", and IDi is its complement, 

Lip(Li) =LiP(Ri) + LiP(Mi \Wi)p(IDi)p(Ri) 

+ Lip{Mi \IDi)p(IDi)P(Ri). 
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Since p(Mi \j^.) = 1, 

Lip(Li) = Lip(Ri) + LiP(7Di)p(Ri) + LiP(Mi \ID.)p(IDi)p(Ri), (2.48) 

and the total leakage risk for a sequence -K is simply the summation of Eq. (2.46) over 
i (slightly rewritten): 

w m 
KL{d) = 5>iPr(Tx(f-)) + YsUpwiT^l -pr(TAi))) 

i=\ i=\ 

171 / N 

i=l 
= ^(d) + ^ji?(d)+^m(d) (2-49) 

where d = (cfo,   d*,   dT), and the meaning of the symbols is obvious from earlier 
definitions. 

2.2.2. The Optimization Problem 

In this section, we present a general discussion of the schedule optimization problem. 
First, we introduce the problem in general terms. Then we outline the major steps of 
our approach. 

2.2.2.1. Introduction. The Target Scheduling Problem (TSP) consists of pro- 
cessing a collection of targets in accordance with a schedule that minimizes the target 
leakage risk, subject to deadline, release time, and energy constraints. A target leaks 
through either because it is rejected by the platform scheduler, or it is missed by the 
DEW during processing. Only when a deadline cannot be met must one or more targets 
be rejected. From an expected risk perspective, rejection losses are worse than miss 
losses because they occur with certainty when deadlines cannot be met, whereas miss 
losses are weighted by their probability of occurrence. Consequently, obeying deadlines 
is the major objective of our scheduling method, and the resulting algorithm was called 
the Deadline Driven Target Scheduling Algorithm (DDTS). 

Observe that the absence of deadlines does not eliminate leakage risk altogether, 
even though the schedules may allocate arbitrarily large dwell times to the targets. 
An approach dedicated to avoiding tardiness at all cost may not do well in situations 
where deadlines are loose or soft (low value of deadline hardness factor a). For some 
practical scenarios, in fact, waiting for a more propitious geometry may considerably 
reduce the risk, and any method designed to process all targets as quickly as possible 
will be suboptimal for such cases. 

Recall the mathematical setting developed in earlier sections. Given a set T = {T; : 
i = 1,  ...,  111} of targets whose values are V;, i = 1,..., 111, a target observation 
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process X = (X\(UJ), ... ,Xn(uj)) on the states of nature u € ft, with values xn G 1Zn, a 
set A of admissible actions, and a decision function d : 1Zn —»• A For every observation 
or scenario xn(u) G 7?.", d produces a decision or action d(xn(u>)) = (t , TT, TT) = a € 
.4. Each decision a incurs a loss L(a;,c?(xn(a;))) = < "^(tjXw,-)) : i = 1, •••, I -f |> 
when the true state of nature is u. The TSP is to find a decision function d* that 
minimizes the total expected leakage risk specified by Eq. (2.49), and subject to the 
constraints CT and C    introduced earlier. 

The apparent simplicity of the risk function %i is quite deceptive because the TSP is 
considerably more complicated than familiar traveling salesman or job shop scheduling 
problems. First, due to platform and target motions and the associated time-variance of 
parameters like DEW lethality and target vulnerability, the TSP is a dynamic problem. 
Potentially every permutation it € II may have to be tested. Second, deadlines and 
release times may require that carefully selected targets be allowed to leak through since 
time window constraints may not be met otherwise. The optimization procedure may 
therefore be required to test every subset TT C 1 of targets to find those targets which 
should be ignored. Finally, since dwell times strongly affect the target completion times 
and probabilities of leakage, their selection is an important part of the optimization 
procedure. Because each target typically receives a different dwell time, every dwell 
time vector tD £ II   Ä; may have to be tried.   Observe that the sensor architecture 

and the torque shaping commands are not currently subject to optimization in our 
framework. 

Relating this to the canonical optimization problem of Section 2.1, the action space A 
thus consists of an uncountably large collection of triples (i , TT, Tr), each of which may 
have to be tested to find the minimum leakage risk. Since, for any choice (i , x, Tr) and 
real number R°, the validity of 1Z(tD, z, TT) < R° can be "recognized" in polynomial 
time, TSP is clearly in the class of Nondeterministic Polynomial (NP) Problems.* But 
since the standard traveling salesman problem polynomially transforms* to TSP, all 
problems in NP transform polynomially to TSP, and the Target Scheduling Problem 
is also NP-complete. This is not surprising, since Savelsberg (1984) showed that even 
finding a feasible solution to the non-stochastic and static traveling salesman problem 
with time windows is iVP-hard. The 0(n2) spanning tree problems also become NP- 
hard when time windows are introduced (Solomon 1986). 

Conventionally, complex problems like the TSP in this report are addressed with 
Monte Carlo simulation, queueing networks, or Petri Nets. Such methods are excluded 
in most real-time situations, however, and only heuristic optimization approaches will 
succeed in estimating the minimum leakage risk within acceptable bounds of accuracy 
and algorithmic complexity. The completion time function and the energy consumption 
function are of little assistance since they are both recursive.   Because the objective 

Papadimitriou and Steiglitz (1982). 
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function K is therefore recursive as well, its internal structure cannot easily be exploited 
for computational purposes. 

2.2.2.2. Optimization Approach. There are no ready answers to the TSP, 
not only because the problem is NP-hard, but also because it involves real-time com- 
putational challenges peculiar to target scheduling. Many useful results in scheduling 
theory and discrete optimization are available to solve related problems or special cases 
of TSP, and every reasonable effort was made in this report to exploit past work by as- 
suming that limiting cases of TSP converged to problems for which analytic solutions 
do exist. This minimized the risks associated with any inaccuracies or unsuspected 
computational traps. 

Our real-time approach minimizes the Conditional Risk TZL (dp, dr, dT \xn) given the 
observations xn, the standard extensive form of Bayesian analysis where posterior loss 
is minimized conditional to the data.* This is equivalent to minimizing the conditional 
risk for every xn G Rn and, since a sufficient condition for minimizing an integral is 
to minimize its integrand over its entire range, it avoids the integration required to 
calculate the overall unconditional risk, 

nL(dDl   dx,   dr) =    [     KL((dD,   dT,   dT) \xn) f(xn) dxn. (2.50) 
JRn 

In this report, we shall thus consider only the conditional risk, expressed in terms of 
the actions resulting from the decision triple d and the observation xn: 

KL((dD,  dr, dr) \Xn )=TlL{dD(xn),  dT(x
n),  dr(x

n)) 

= TlL\aD, <*„-, ar) . (2.51) 

Observe that xn does not provide measurements on the entire sample space £1, and 
some probability computations are still required. The space CtT underlying the target 
parameter vector irT (Eq. (2.7)), for instance, cannot be sampled during algorithm 
execution since parameters like Target Hardness are unobservable in real time. This 
also applies to the platform sample space ß   . 

The first step in minimizing multi-dimensional functions is to look for mathematical 
structure such as convexity, monotonicity, and separability. Considering separability 
first, no separation of the risk function TZL is possible because of the strong interdepen- 
dence of the decision variables. Considering aT next, we reject targets on the basis of 
Marginal Risk Reduction whenever deadlines cannot be met. Therefore ^(ap, ax? <*r) 
is monotonic only in the total value of the set % of rejected targets and not in aT itself 
since the ar's are sets with no strict ordering. 

* Ferguson (1967); Berger (1980); Duda and Hart (1973); Jain (1989). 
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Next, consider dwell time allocations aj). As dwell times are increased, the proba- 
bility of successful target processing increases, and conversely. But each target could 
conceivably be allocated a different dwell time or leakage probability pL, hence tD or 
ap is actually an n-dimensional vector whose optimization would be impractical in real 
time. To explore the possibility of allocating just a single common dwell time to all 
targets, we note that encouraging tests have indicated that leakage probabilities tend 
to bunch around a common value during such as optimization. One explanation for 
this bunching effect is that our rejection schedule (see Eq. [2.52]) severely penalizes 
targets with a high tD value, but the expected risk criterion also strongly discourages 
retaining targets with a low pR value. 

While the computational benefits of assigning a common pK to all targets are enor- 
mous (the dimension of the optimization problem is reduced by a factor of \I\), forcing 
an increase in p for all targets may significantly increase their dwell times and may 
cause additional target rejections, thereby obtaining only a suboptimal solution. Con- 
sider for instance a high-valued target that is close to the DEW, requiring considerably 
less dwell time than the other targets to achieve a given pK. From a marginal benefit 
perspective it would be desirable to allow increasing the pK of the valuable target, while 
retaining—or even decreasing—the p of the other targets, something that the DDTS 
algorithm does not allow. Note however that the entire scheduling process is recursive: 
targets rejected at one time will reappear again as unprocessed targets at another time 
and will be allocated an appropriate amount of dwell time as soon as high-priority tar- 
gets have been processed. Therefore, in spite of the remote possibility of producing a 
suboptimal schedule, the dwell decision function do assigns to each target an equal pL. 
As a final comment about the structure of dj), we show below that, except for minor 
perturbations, TZi(aj), ax, aT) is also convex in ap. 

No natural ordering of the actions a* G II exists for TSP Thus TZi cannot be 
monotonic or convex in aT, and a combinatorial heuristic will be required to find 
the optimal sequence TT*. 

A simplified flowchart of the DDTS algorithm is shown in Fig. 2.5. Measurement 
inputs are obtained from on-board or from external sensors. Other inputs include 
external handovers, constraints, and objectives. The measurements are samples xn € 
Rn of the measurement process X discussed in detail in Section 2.2.1.1. Constraints 
are specified by the feasibility F =< CT, fc', C , JE > defined in Section 2.2.1.3, 
and objectives are specified via the optimization criterion H =< L,V, T,E > discussed 
in Section 2.2.1.4. One input not discussed thus far is the scheduling horizon i™01, 
the maximum time into the future for which targets must be scheduled. This input 
parameter is needed for two major reasons. First, the complexity (i.e., running time) 
of DDTS is a polynomial in the quantity j X j of targets, increasing significantly as 111 
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is increased. Second, the reliability of predictions or estimates decreases considerably as 
the horizon is increased. Although additional experiments may be needed to determine 
a best value for t™ax, currently a value of 100 seconds is used. 

In our decision-making setting, DDTS is viewed as a decision maker that takes obser- 
vations xn{u) into actions a = (ap, aT, ar) € A, thereby incurring a loss L(u},a) (see 
Section 2.2.1.2.). Only actions ap and ax produce an output—dwell time tD and target 
sequence 7r, respectively. When platform jerking is a serious problem, specific retarget- 
ing states are produced to minimize jerk, but this is not considered in the first version 
of the algorithm. (See Section 3.4 for a derivation of smooth command schedules.) 

Decisions are made to minimize the overall objective function TIL^D, dm dT) of 
Eq. (2.48), subject to the feasibility constraints F. The complexity of the optimization 
problems rules out an analytical solution, and our heuristic approach consists of three 
nested loops, as shown in Fig. 2.5. Before executing these loops, the algorithm is 
initialized by calculating the deadline equivalence classes and by constructing an initial 
tour through these classes. Two targets belong to the same class if they have the same 
deadline and release time. Whenever two targets have the same deadline but different 
release times, the one with the earliest release time is ranked first. 

The initial tour KQ through all the targets is found in two steps. First, a shortest 
tour within each of the equivalence classes is found, one for each class. These are 
the internal tours. Then a global tour is constructed where classes are considered as 
single points and class elements are included in accordance with their internal tours. 
Tour construction is done using the Farthest Insertion Algorithm*, and, in global tours, 
targets in an equivalence class precede those in another class if, and only if, the deadlines 
of the former precede those of the latter. Observe, however, that this initial ordering 
of targets may later be disturbed when tour corrections are needed to meet deadlines. 

The execution of the three loops may be viewed as occurring sequentially, with 
sequence selection first, then target rejection, then dwell time optimization. Starting 
with an initial dwell time t^ and tour 7To, the first operation is to test completion 
times tc against deadlines. If no deadlines are missed up to t™ax (horizon limit), no 
improvements to TTQ are needed and no targets are rejected, and all that remains is 
to optimize dwell time tD. If one or more deadlines are missed at some time t^, tour 
improvement methods such as 2-opt* are brought into action until no more deadlines are 
missed, until a maximum number nx of tour improvement attempts have been made, 
or until an optimum tour 7r* has been found. During tour improvement, the rejection 
risk 1ZT is minimized by sufficiently reducing the completion time of important targets 
by varying the permutation it 6 II. Observe that not all completion times need to be 
minimized, only those that would lead to important targets missing their deadlines. In 
all but the tightest scheduling scenarios, only a few corrections need to be made since 

*  Lawler et al. (1985); Norback and Love (1977). 
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few targets would miss their deadlines. Note also that the rejection risk will often be 
"flat" in the 7r variable because many sequences will yield the minimum risk TVL. 

If some deadlines are still missed, some targets must be rejected. This is accomplished 
by rejecting targets whose removal produces the largest marginal risk reduction, using 
the rejection criterion 

a-p*ID-L* 
r-t°*+At*' (2"51) 

where 

a  is the deadline hardness (a € [0,1]). 
p*ID  is the probability of correctly identifying the target type, conditional to 

deciding its type is 9*. 
L*  is the expected target loss conditional to 8*. 

tD    is the target dwell time conditional to 6*. 
AtR  is the retarget time earned by skipping the target. 

While the obvious strategy is thus to skip a target whose ratio is least, note the 
interesting circumstance where such a least target precedes an "early" target, one 
where waiting occurs. Recall that the processing of a target cannot be started before 
its release time. Hence there is no point in skipping a target that precedes an early 
target since that will simply increase the waiting time at the early target, and this 
consideration is included in the DDTS algorithm. While there is no analytical proof 
that this rejection scheme is optimal, two important limiting cases have actually been 
shown to be optimal. With the quantity of late targets as a risk measure, Kise, Ibaraki, 
and Mine (1978) have shown for the static case that the numerator of Eq. (2.51) is the 
best rule. In the standard "shortest-job-first" approach, Smith (1956) and others* have 
verified that, when all tasks (targets) have the same value, then r of Eq. 2.50 is the 
also the best rule. Additional work by Lawler (1971) and others contains significant 
special cases where the ratio of value to time is an optimal ranking criterion. 

When the optimal tour and rejection have been found, the outer loop is re-entered, 
and a new vector of dwell times is attempted, until the overall leakage risk is minimized. 
Recall that dwell time vectors tD are obtained from common values of pL for all targets 
using a relationship whose boost phase version is derived in Section 3.3.1.4. This 
optimization process can be explained by using just two targets whose values are V\ 
and V2 and whose deadlines are d\ < d<i, respectively, as shown in Fig. 2.6, where 

PK = 
1
-PL- 

As p is increased from 0, the total risk decreases as (1 — pK) (Vi + V2) until the first 
deadline di is exceeded, and the risk jumps to V\ + (1 - PK)V2- Additional increases in 
p  further decrease that risk until the second deadline is violated, and both targets leak 

* Abdul-Razaq et al. (1990); French (1982); Baker (1974); Vickson (1980a,b). 
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through. When the first deadline is violated, the risk therefore jumps by V\pK before 
dropping to its minimum value V\ + (1 — PK)V2 associated with the maximum dwell 
time for both targets—i.e., when tci = d<i. 

For the general multi-target case, the risk function therefore may have several local 
minima, technically as many as there are targets, and this could severely complicate 
the optimization process. But this is a potential problem only for sparse threats, since 
for large threats the jumps are relatively very small and can be ignored with most 
optimization algorithms by setting the tolerance or error coefficient sufficiently high, as 
we have done using the Brent Algorithm (Press et al. 1988; Brent 1973). When threats 
are in fact sparse, deadlines are also less stringent, and there is thus no significant 
approximation problem in either a target-rich or a target-poor environment. 

To conclude our discussion on optimization, recall an earlier discussion of scenarios or 
threats for which deadlines were very loose or very soft, and where an early processing 
of the targets incurred a large risk due to an inconvenient threat geometry in which 
threats are far away from the DEW platform. In cases such as this, delaying any 
action can often improve the overall leakage risk, and such delays can be introduced 
by simply increasing the common pK, because that also increases the dwell times and 
the resulting completion times. This may occassionally lead to minor violations of the 
energy constraints; however, in such a case, a waiting time should be introduced, but 
this is not done in the current version of DDTS. 

Expected 
leakage 

risk 

pKtoo low ->|<-PKtoohigh 

tc=d2 
>PK 

Figure 2.6. Risk decreases with increasing p   until the dwell time causes target tardiness. 
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3.     Scheduling Theory for the Boost Phase 

In this chapter, we address the Target Scheduling Problem in greater detail by fo- 
cusing on the Boost Phase. In Chapter 5, the boost phase solution will be extended to 
the more complex midcourse discrimination problem. 

When using the objective function of Eqs. (2.49) and (2.50), and as illustrated in 
Fig. 2.5, the problem suggests a decomposition into three subproblems: 

1. Finding an optimal sequence 7r* £ II . 

2. Rejecting targets. 
n 

3. Computing an optimal dwell time vector tD € Jj[ Rj . 
i-i 

While it is clear that these subproblems are generally not independent, such a de- 
composition has important benefits because significant special cases of the TSP often 
reduce to just one of these subproblems. The strong resemblance to standard problems 
in combinatorial optimization was an additional motivation to develop connections to 
the theoretical optimization business in order to benefit from the considerable work of 
others. We therefore relate each subproblem to the combinatorial optimization liter- 
ature to show how others have addressed similar problems. Then we show how the 
solution to each subproblem is combined into a solution to the entire target scheduling 
problem. 

Considering the important trade-off between speed and accuracy, perhaps a more 
important reason for this three-part decomposition is the admission that we have been 
unable to derive tight upper and lower bounds for the accuracy of the DDTS algorithm. 
Given that bounds are available for certain versions of its subproblems, the algorithm 
was designed to agree with those bounds on these subproblems, and we are currently 
pursuing an indirect approach where global bounds are derived from these "subbounds" 
and from structural information relating the subproblems. 

To provide a slightly different perspective for discussion purposes, the DDTS algo- 
rithm may be viewed as consisting of two major nested optimization loops, a time 
optimization loop and a leakage probability minimization loop, as shown in Fig. 3.1. 
This figure is a further simplification of Fig. 2.5 and shows the inner loop as a local 
time optimization loop where both the target sequence and the target rejection set are 
optimized. In the outer loop, the leakage probabilities pL = 1 — pK are minimized via 
the allocated target dwell times tD(j> ). 
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Starting with observations xn, an initial decision vector (d°, d®, d°D), a feasibility F 
and optimization criterion H, the algorithm iterates over the scalar pK until a minimum 
value for the total risk 11 is obtained. Using the BRENT algorithm, the minimum is 
reached in very few steps, seldom more than 4 or 5. 

In concluding this chapter, we show how the comprehensive threat information avail- 
able on the platform can be used to transform discrete target scheduling solutions into 
smooth control hardware commands to reduce the acceleration "jerk" inherent in dis- 
crete commands. 

3.1 Selecting the Permutation II 

In some situations, the target scheduling problem reduces to the selection of an 
optimal permutation n*, and it is then an ordinary target sequencing problem. This 
occurs, for instance, when dwell times tD are either negligible, or constant and equal. 
If they are negligible, then any choice of tD is as good as any other since the completion 
times tcx(i\ of Eq. (2.24) are then unaffected by tD, regardless of the specific value of 
7T or the set TT of rejected targets. If dwell times are constant and equal, then their 
contribution to tOT(i) will also be a fixed constant, regardless of 7r or Tr, because the 
time function fc of Eq. (2.29) is then unable to detect any reordering or reassignment 
of target dwell times. Observe that only in the static case, where distances between 
targets are fixed, can the equality requirement be removed, and it then suffices that 
dwell times be constant. 

When deadlines are not too "severe" and the leakage probabilities in Eqs. (2.42) 
and (2.43) are not permutation-dependent, the TSP further reduces to a famous prob- 
lem known as the Traveling Salesman Problem (Lawler et al. 1985), which we briefly 
describe below. First, we need some familiar definitions. 

A directed graph (Roberts 1976) is a pair G =< V, E >, where V is a finite set of 
vertices (the "cities") and E C V x V is a set of pairs of elements from V called the 
edges or arcs (also "segments") of G. For any edge e = (u, v) G E, u is called adjacent 
to v, or the ■predecessor of v, and v is called adjacent from u, or the successor of u. Any 
edge (u, v) where u = v is called a loop. 

Consider an (ordered) index set I of size |I|. A path ("highway)" in G is a sequence 
S =< V{ : i E I > of vertices, each of which is said to be visited by the path. A path is 
simple if no vertex is visited more than once, closed if its first element is also its last, 
a cycle if it is simple and closed, and complete if it visits every vertex in V. A cycle 
is also called a sub-tour, and a complete cycle is a complete tour, or simply a tour. A 
tour is thus a path which visits every vertex in V once and only once. 

To each tour corresponds a permutation 7r : I —> / of the index set I (see Sec- 
tion 2.2.1.2.1). All tours in a graph can thus be examined in terms of all permutations 
7T on some index set I. Referring to Fig. 3.2, if the original tour is 
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Figure 3.2. An illustration of the original tour TQ and its permutation T(7T). 

To=<t>i,...,V|/|,t;i >,   where |/1=9, 

then the tour induced by the permutation 7r is 

T(TT) =< UT(1),   . . . ,  Vx(i),   ...,  U,(|7|),   UT(!) >, 

where uT^\ is the vertex in position i on the tour T(TT). 

Next, consider a cost or distance matrix [c,y] whose entry Cij is the cost of traveling 
from city V{ to city VJ. The Traveling Salesman Problem is to find a permutation 7r* € II 
such that the tour T(TT*) minimizes the cost: 

C(T(TT)) = Y^ c*(t>(i+i) 
ie/ 

(3-1) 

where 7r(|J| +1) = TT(1). 

In target scheduling terms, a minimum-risk schedule is found by simply minimizing 
the sum of all retarget times. 
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Of particular interest in this report is the more structured situation where the dis- 
tance or cost matrix [c;y] satisfies the triangle inequality,1 

Cik < Cij + cjk, {i,j, k} C I, (3.2) 

and the symmetry condition, 

cij = cjii {hJ,k} C I ■ (3-3) 

These relations are obeyed in geometric situations such as those in this report, where 
cities correspond to points in a metric space, and distances are computed according 
to the metric of that space. Usually this metric will be the Euclidean metric (Loomis 
and Sternberg 1968), and the problem is then referred to as the Euclidean Traveling 
Salesman Problem (Lawler et al. 1985). 

Next, we enter the realm of heuristics with the admission that the conditions required 
for the strict applicability of traveling salesman solutions are not frequently satisfied, 
and that they are often unverifiable. Even move annoying to those seeking accurate 
solutions is the fact that the traveling salesman problem itself has no efficient solution, 
since it is NP-hard (Papadimitriou and Steiglitz, 1982). 

In spite of these regrettable facts, traveling salesman solutions can provide consider- 
able support because it is generally wise—at least during optimization "start-up"—to 
minimize the total retarget time, even when dwell times and deadlines are not neg- 
ligible. This policy will usually provide a good starting point for optimization and 
subsequent corrective steps. Of course, scenarios can be exhibited where the opposite 
is true since, in some cases, doing nothing for a while will allow the collection of tar- 
gets to move into a more convenient geometry. We have discussed earlier and shall 
further discuss below some specific corrective measures that can be taken to minimize 
the harmful effects associated with such rare cases. Let us now examine a bit more 
closely the process of constructing an optimal tour. 

A traveling salesman problem is typically addressed in three steps: 

1. Tour initialization. 

2. Vertex selection and insertion. 

3. Tour improvement. 

1 We are ignoring here the notable exceptions where certain obstructions or interference 
may prevent or complicate access to some cities (targets) from some other cities. In such cases, 
a "shorter" path may be more expensive than a longer one. 
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3.1.1. Tour Initialization 

As in most non-linear optimization problems, the selection of a starting point for 
tour construction is important. Usually, the starting point is a subtour, a tour on 
a subset V' C V of the vertices. There are many ways of choosing such an initial 
subtour. In static Euclidean problems, a very successful method is the Convex Hull 
Procedure (Norback and Love 1977; Eddy 1977). Recall that the convex hull of V is 
the smallest convex set that includes V. Since Flood showed in 1956 that every static 
Euclidean traveling salesman problem has an optimal solution that visits the cities on 
the boundary of the hull in the same order as if only the boundary of the hull were 
traced, this approach is very appealing. 

Unfortunately, the construction of even a planar convex hull requires 0(| J|2) oper- 
ations (Eddy 1977), and often yields only a small subtour. Hence many vertices may 
remain to be connected to the subtour to form a tour on all of V. An additional diffi- 
culty is that vertices—i.e., targets—are added and removed from the tour as old targets 
are processed and new targets are introduced, and this can considerably slow down the 
convex hull construction in Cartesian 3-space. As a result of these obstacles, we chose 
a simpler approach where the initial tour consists of only a single randomly chosen 
vertex. All of the tour construction work was thus deferred to the vertex selection and 
insertion process, which we discuss next. 

3.1.2. Vertex Selection and Insertion 

Once an initial tour has been obtained, the next step is to recursively select vertices 
currently not on the tour and to insert them in the tour until a full tour is obtained. . 

There are also several ways to do this. A popular and simple-minded approach is 
called the Nearest Neighbor Algorithm: 

1. Start with an initial subtour consisting of a single vertex v\. 

2. If the current subtour is 5* =< v\,... ,vj. >,k <\ 11, select a 
vertex Ujt+i not on the subtour, which is nearest to v^ (with 
respect to [c,j]), and add v^+i to the end of the subtour. 

3. Stop when a complete tour is obtained. 

In the general case of time-varying costs Cy(i), this approach can obviously lead to 
catastrophic results. But even in the static case, this myopic approach has the obvious 
drawback that, even though all earlier vertices were at least "locally optimal", the cost 
C|7|j of the last edge from vu^ to v\ may be very high (see Fig. 3.2). In the Euclidean 
case, of course, the triangle inequality prevents the cost from exceeding the total cost 
of the previous subtour S*. More precisely (Reingold et al. 1977), if Ni is the tour cost 
obtained by the nearest neighbor algorithm, and Oj is the optimal tour cost, then 
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Ni 
<\(\W\)1+l), (3-4) 10/ 

where \x~\ is the least integer greater than x. 

While this is only an upper bound, it is possible to construct cases where the tour 
cost | Nj | is more than | lg (|I|) times the cost of an optimal tour. So it is clear that 
Euclidean structure has been of some help in reducing the worst case error in modeling 
the static optimal tour cost. 

Many variants and extensions of the nearest neighbor approach have been developed 
and tested (Lawler et al. 1985), and, in spite of their low order of complexity—most 
are of 0(|i"|2)—they have not performed well without additional corrective steps. One 
algorithm, however, the farthest insertion algorithm (FINSA), has almost consistently 
done better by contradicting the "greedy" policy of nearest neighbor approaches in that 
the city selected for insertion in the subtours is farthest from the subtour. As we shall 
see, we decompose the permutation selection problem into the selection of "almost- 
static" subtours, tours whose vertices are visited at almost the same time. We expect 
that the superiority of FINSA will extend to such tours, and FINSA was thus also our 
choice for the TSP discussed here. The first step in the FINSA subroutine is the same 
as for the nearest neighbor algorithm. But in Step 2, it chooses the city or vector vj; 
not on the subtour which maximizes the distance min {cjk : VJ 6 Sk} from Vk to the 
current subtour Sk- Once k is found, the greedy policy is resumed, and Vk is inserted 
as the (immediate) successor to u; and the (immediate) predecessor to VJ if, and only 
if, vi precedes VJ in the current subtour and the local insertion cost c,& + c^j — Cij is a 
minimum. 

3.1.3. Tour Improvement 

In spite of impressive results in many applications, the best that appears known about 
the accuracy of FINSA is that it generates static tours which approach 3/2 times the 
optimal tour length. Because farthest insertion does not correspond in any direct way 
to any algorithm for generating minimum spanning trees, it has been more difficult to 
analyze than other insertion algorithms, and new techniques will be required to derive 
tight upper bounds. In many applications including the TSP, the error uncertainty 
associated with FINSA is not acceptable and tour improvements must be made. 

Most reliable tour improvement procedures are edge exchange procedures (Lawler et 
al. 1985) where r edges in a tour are exchanged for r edges not currently on the tour 
as long as the exchange still yields a tour and the length of the exchanged tour is less 
than the length of the previous tour. Such edge-exchange procedures are referred to 
as r-optimal procedures (Lin and Kernighan 1973), where r is the quantity of edges 
exchanged at each iteration. A tour is called r-optimal if there is no further exchange 
of r edges which can result in a shorter tour. 
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Unfortunately, the complexity of r-opt procedures increases rapidly as r is increased, 
not only because all r-exchanges must be tested—potentially an 0(r\) process—but 
because every exchange changes the tour, and a new 0(r\) process may have to be ini- 
tiated at every exchange. That is essentially why r-opt methods have escaped rigorous 
complexity analysis and no tight complexity or accuracy bounds are known. In spite 
of this, r-opt procedures have been very successful, even when r only equals 2, and this 
is the method we have chosen for the TSP. 

To gain some technical insight into the 2-opt procedure, refer to the simple path 
of Fig. 3.3 where just one pairwise exchange is shown. The only way to obtain a 
simple path after removing edges t\ and es, without altering the terminal nodes T0 

and Tj+i, is to insert two new edges, e^ and eio- Observe that the new path segment 
(e6, e7, es, e$, eio) from Ta to Tf (shown as a dashed line) involves a reversal from Te 

to T\j. This may be very important in time-varying networks where a node such as Te is 
reached too late and nodes like Tb are reached early. The skipping of nodes T&, Tc, and 
T<£ on the way to Te may obviously gain considerable time and may avoid the tardiness 
of node Te. While the furthest insertion approach (FINSA) is excellent in finding 
shortest paths through topologically static networks, considerable improvements may 
be needed when nodes of the network are moving and when the processing time at each 
node is position-and-time-dependent, and the 2-opt improvement procedure provides 
an excellent balance between performance and speed. 

eio 
-«* 

/ 
/ 

'    eg 

Tb £        e2     ^ T, 

Figure 3.3. Changing edges e\ and es for edges e^ and eio m tne 2-opt tour improvement 
procedure. The new path segment is shown as a dashed line. 
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3.2 Target Rejection 

Even when schedules are optimal, some deadlines may not be met, as we discussed 
in Section 2.2.2. In such cases, and depending upon the penalties associated with 
target tardiness, one or more "unimportant" targets may have to be rejected so that 
"important" targets can be processed by their deadline. The problem of developing job 
rejection criteria is not new, and the work presented in this chapter reflects considerable 
work done by many others on similar—but much simpler—problems. Even for simple 
problems, proofs of optimality are scarce, and our approach is necessarily heuristic. 

As before, we have attempted to use previous results as limiting cases of our prob- 
lem, hoping that the special way in which we have combined problem parameters has 
produced a composite rejection criterion that is near-optimal. First, we derive the 
criterion in general terms. Then we define each of its constituent elements in rigorous 
detail. 

3.2.1. The Rejection Criterion r 

Target rejection can be discussed in terms of three simple but competing principles: 

1. Ignore targets with large processing times. 

2. Ignore targets whose leakage risk is low. 

3. Ignore targets whose deadlines are soft. 

The challenge, of course, is to combine these conflicting criteria into a rational composite 
that resolves the conflicts while approaching optimality. Starting with the temporal 
aspects, it was shown in Conway et al. (1967) that scheduling jobs in accordance with 
the SPT schedule (shortest processing time first) minimizes the mean flow time F , the 
mean time elapsed from job release to job completion. In French (1982), F is also shown 
to be equivalent to mean completion time C. It was also shown in Smith (1956) and 
Dyer and Wolsey (1990) that, when jobs have different weights or values, the weighted 
sum of completion times is minimized if jobs are scheduled in accordance with the ratios 
of their processing time to their weight, smallest ratios first. Of particular relevance to 
the TSP is the machine scheduling problem of minimizing the number of tardy jobs, 
those whose completion time exceeds their deadline. Extending the work of Moore 
(1968) to the case where consistent release (availability, ready) times are considered, 
an optimal solution was derived in Kise et al. (1978) with a rule that rejects jobs which 
marginally contribute the most to completion times. This rule reduces to the SPT 
schedule when release constraints are ignored. While none of these objective functions 
exactly match our own, they—together with more complicated numerical rules (Abdul- 
Razaq 1990)—strongly suggest that our heuristic should contain target processing time 
T and target values or weights w in the form of a ratio r = w/r, larger ratios indicating 
greater importance. 
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In target scheduling, processing time is defined in terms of the dwell time tD and 
the retarget time tR, and we are interested in the marginal time gained by ignoring 
a given target. This time gain is simply r = tD + AtR, where tD is the dwell time 
conditional to the target type 6* assumed by the battle or platform manager, and AtR 

is the retarget time earned by skipping the target. Observe that in the TSP, these 
processing times are controllable in the sense that they are adjusted on the basis of 
previous and future decisions. Recently, some renewed attention has been devoted to 
problems with controlled processing times (Daniels 1990; Vickson 1980a,b), and the 
simple rule outlined here agree with the results of that work. 

In our risk approach to scheduling, we admit that target values or priorities depend 
on many statistical factors, and we use expected leakage loss as a measure of target 
value. This loss is simply PM'V, where V is the value of the target, and pM is the prob- 
ability of miss—i.e., the probability that the target will leak through if its processing is 
attempted. But p is determined not only by weapon lethality and target vulnerability; 
it is also determined by the ability of the weapons platform to select and identify the 
target. Thus, if p is the probability that the target is missed, and if we assume that 
every misidentified target leaks through, 

PM = (PM \ID )PID + (PM \fD ) i} " *D) 

= {PM\ID)PID+{1-PID)' (3-5) 
where 

p     is the probability of correctly identifying the target, and 

V   I      \P.r ITTT I   is the probability that the target is missed if it has been correctly 
(incorrectly) identified. 

Expressed in terms of target destruction, we get 

PK=
Z1
-PM={}-PL\ID)PID 

= {pK\JD)Prm (3-6) 
where pK |      is the probability that the target is destroyed given that it has been 
correctly identified. 

As we discussed in Section 2.2.2.2, our approach allocates to each target an equal 
value of pK | . Carrying along pK \ is thus superfluous, and we use only p* , the 

probability of correctly identifying the target, given that the target was classified as 
being of type 9*. 

The target loss value L itself is uncertain, of course, since it depends on target type 6, 
which is a random variable. To exploit all the available target type information and to 
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reflect the classification rules embedded in the type-discrimination algorithm, we use 
the Bayes posterior expected value V* of the target value V. 

Finally, the deadline hardness a €. [0,1] is only used as a multiplier in the rejection 
ratio. Combining all these arguments, we obtain the composite target rejection criterion 

a.p*   .v* 
r =        —  

tD* + AtR (3.7) 

where 
a  is the deadline hardness. 

p*     is the probability of correctly identifying the target type, conditional to de- 
ciding its type is 8*. 

V*  is the expected target loss conditional to 8*. 

tD*   is the target dwell time conditional to 8*. 
AtR  is the retarget time earned by skipping the target. 

While the obvious strategy is thus to skip a target whose ratio is least, note the 
interesting circumstance where such a least target precedes an "early" target, one 
where waiting occurs. Recall that the processing of a target cannot be started before 
its release time. Hence there is no point in skipping a target that precedes an early 
target since that will simply increase the waiting time at the early target. Before we 
address this subtlety, however, let us define the rejection ratio in more rigorous terms. 

3.2.1.1. The Dwell and Retarget Times AtD* and AtR. The total time 
gained by skipping a target is At = tD* + AtR, the sum of the target dwell time and 
the retarget time gained. Recall that the dwell time tD is conditional to the selected 
target type 8*. While the entire dwell time is gained when a target is skipped, the 
retarget time gained depends on release times and completion times of neighboring 
targets. Referring to Fig. 3.4, where the skipping of target Tj is considered, let t% be 
the completion time of Tx, T

R
y the retarget time from Tx to Ty, tx the availability time 

of Tx, and tf the dwell time of Ty. Then 

tf = maxj*f_j + tf_ld, tf\ + tf . (3.8) 

tf+1 = max jtf + tftj+1, tf+11 + tf+1 (3.9) 
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Figure 3.4. Target Tj is skipped by traveling directly from Tj-\ to Tj+\. 

The total gain when skipping Tj is thus 

Atj = tj+1 — max< tj_x + tj_ltj+i, tj+1 > + tj+1 

= maxjtf + tfJ+1, tf+1} + tfl, - maxjtf.! + *f_1J+1, tf+1} - t?+\ 

:|iy +tyJ+1, <j+1 > -maxI<_,-_! + i;_lj+1, tJ+1 > 

:{(*f-i+*f-ij+i,^+i}. (3-10) 

= max< 

= max< 

— max< 

Observe that, when release times (t£) are soft, the total retarget and dwell time 
gained is simply 

A*; = tf_hj + tf + tfJ+1 - tf.1J+1 . (3.11) 

3.2.1.2. The Deadline Hardness Constant a. Each target Tj is assigned a 
possibly different constant aj (E [0,1]. 

3.2.1.3. The Identification Probability p*^. We compute the probability p*ID 

of correct identification using a Bayesian approach,* where p*[D is a posterior estimate 
derived from prior estimates TT(0U) — prob (T is of type 6U) and additional information 
about intervening decisions. More precisely, let 

P*D   = Prob (co"ectly deciding target type |dedde type ig g*). 

p{Qu k)   = prob (decide type is 6U |type ig QJ. 

lißv k)  = prob (type is 6V |type is eJ. 

* Ferguson (1967); Berger (1980); Duda and Hart (1973); Jain (1989). 
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Then, using Bayes' rule, 

p.   =l(e>U.)=     «WM     , {s.12) 

where M is the quantity of possible target types. 

3.2.1.4. The Posterior Loss L*. When a target of type 9U leaks through, a loss 
L(6U, a) = Vu is experienced. Given that target types are uncertain, Bayes' theorem 
is also used here to compute the posterior loss L* = E(L(8u(u),a) \g*) of the target 
leaking through, conditional to deciding that its type is 6*. Let TQ denote a target of 
type 9U, and let 

PM{°U)   = prob (missing target Tgu \decide type is Q*). 

p*M(Tg,0u) = prob (missing target Te and target is of type 9U decide type is 0*)- 

PWU) = Prob (destroying target TQU |dedde type is g*). 

P*K(
0

« \ID) = Prob (destroying T^ |dedde Q* &nd correctly identify T^ )• 

PK(
6

U \W) = Prob (destroying TQU |dedde g* and incorrectly identify Töu ) • 

Then 

PWU) =PWU \ID)P)D + {PWU) \Jö)(I -P)D) 

= {PWU) \1D )P]D{0U) , (3-13) 

where we assume that any incorrectly identified target leaks through. 

The expected leakage loss associated with a target, posterior to deciding that its type 
is 6*, is thus 

M 
V = E(L(6(u),a) \e.) = Y/Vup*M(Tu,Ou) 

u=\ 
M 

= ^Ks(0, HPM(0<O- (3-14) 

*( W k) 

u=\ 

But 

q(6u \e*) = <¥ Z7=i<(>vW* k) 
and 
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PWU) = l - PH*«) = i - (PH*.) \ID )P)DW 

= I-PKP*ID(OU) 

{1 ,    9U ^ 6* 
(3.15) 

(l-pK)    ,    0U = Ö*, 

where p   is a constant independent of type 6U, reflecting the fact that each target is 
assigned an equal p*x(0u) \Tn- Concluding, 

M     Vu<eu)P(6* \ej = £ B^TVT^T-T-^iA- (3-16) 

3.3 Selecting the Swell Time Vector tD 

In the TSP, increasing dwell (processing) time of a target decreases its leakage prob- 
ability. But it also delays the completion time of subsequent targets, and may result 
in missed deadlines. In most scenarios, in fact, dwell time is the major contributor to 
target completion time, and tradeoff between dwell time and tardiness must therefore 
be resolved. A strict minimization of expected loss, however, could produce different 
dwell times for different targets and would typically require an 11 |-dimensional nonlin- 
ear optimization. During the boost phase, one way around this computational burden 
is to exploit the fact that the dwell time required to achieve a given destruction prob- 
ability pK is very sensitive to pK, increasing rapidly as pK exceeds a nominal value pNOM 

(typically near 0.8) (see Fig. 3.5). When one target is more valuable than another, 
the natural temptation to increase its pK is quickly damped when small increases in p 
cause large increases in t and disproportionate losses due to tardiness are incurred, 
as shown in Figs. 3.5 and 3.6 for one typical scenario. 

As we discussed in Section 2.2.2.2, kill probabilities tend to bunch around a nominal 
value, and the multidimensional optimization may be replaced by a scalar minimization 
by assigning to each target a fixed pK, and by varying this pK until a minimum risk is 
obtained. The individual target dwell times can then be computed from this single p*K 

via an inversion process, and that is what we have done. An analogous situation pre- 
vails during the midcourse discrimination phase where, instead of p , the optimization 
variable is the particle return count NJJ. Both inversion processes involve several 
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1000_ 

Dwell time 
D (msec) 

100_ 

10 

0.0     0.25 0.50 0.75   ?N0M    1.00 
Kill probability pK 

Figure 3.5. Dwell time is very sensitive to p^. above PNOM- 

100 

Expected 
tardiness   75 -- 
loss E(L) 

(%) 

50 -4- 

25 -■ 

0 
T 
10 

T  1 
100 1000 

Dwell time (tD msec) 

Figure 3.6. Tardiness losses increase rapidly as dwell times are increased. 
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subtle mathematical arguments peculiar to the defense phase under consideration, and 
no generalization would have been productive. Their derivation was deferred to future 
sections where each phase is discussed separately. 

A legitimate concern, of course, is that the minimum risk may only be a local and 
not a global minimum. Individual target variations may in fact produce as many local 
minima as there are targets, as we explained in Section 2.2.2.2. But the bunching of 
dwell time values also discussed earlier essentially limits the effects of these variations 
to a ripple dominated by a unimodal trend, as shown in Fig. 3.7. To gain control over 
these ripples, we modified Brent's Method (Brent 1973; Press et al. 1988) to allow a 
tolerance setting sufficiently large that errors of magnitude less than e can be tolerated. 
The value of the dwell time tD derived from p*K is then also within acceptable error 
bounds. 

Expected 
loss E(L) 

0.00 

0.25 0.50 0.75 1.00 

Figure 3.7. Local minima are strongly dominated by the p   global minimum, and 
ripples of size less than e have negligible affect on the optimum value pg. 

3.3.1. Deriving the Optimal Dwell Time tD* from p^ 

In this section we continue the boost phase emphasis to find the dwell time t 
required to achieve a given pK. 

To appreciate the importance of geometry in this derivation, consider Fig. 3.8 where 
we show the target's vulnerable set A^JM with radius r^iM, and *ne DEW's energy 
deposition set AJJEW, with radius TDEW-   Target destruction is determined by the 
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DEW energy deposited in the critical intersection AEFF — AAIM H AQEW called the 
effective set, whose area we define as the effective area \ AEFF I- Clearly, no damage 
is done to T if | AEFF 1= 0, and maximum damage is done when maximum energy or 

power is delivered to A AIM, which occurs when \AEFF 1= rninl \AAJM\ J I AD£W| J 
if we assume a uniform energy density flow through ADEW- K another pulse profile 
(e.g., Gaussian, "tophat") is valid, a similar argument may be used with appropriate 
energy normalization. Hence AEFF *

S
 
a major factor in the lethality L of the DEW, 

as shown in the following definition. 

Target T 

>x 

Figure 3.8. Geometry used to compute p   and t D 

Definition 

We define DEW lethality as 

QtD\AEFF\   (.    ,    ,       \ 
L = 77    [joules \     2 

where 

lEFF 

G = 
7tPD2cosa 

^2R2^P{T^) 

[watts I     2 h and 

(3.17) 

(3.18) 
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D is the diameter of the DEW optics (m). 
a is the aspect angle between the DEW beam and the target. 
A is the DEW wavelength (m). 
R is the distance from the DEW to the target (m). 
P is the DEW power (w |steradian )• 

tD is the DEW dwell time. 

AEFF  = min | | A AIM I, \ADEW I j. 

The "miss distance" MD =| XAIM~XQEW I is due to random error ex and ey caused 
by random angular errors Egx and Egy due to uncertainties in acquisition, tracking, 
pointing (ATP), and also in sensing and aimpoint location. AßFF is thus a random 
variable, and so is the lethality L. The probability that a target leaks through may 
thus be expressed as follows: 

pL=p(L<H), (3.19) 

where H is the (random) hardness of the target. Both the distributions of L and H 
are therefore required to obtain pi- In practice, the hardness H is assumed Gaussian 
with mean fijj and standard deviation ajj. But the derivation of the distribution of 
L is more difficult. We proceed in steps. First, we derive the functional relationship 
relating L to the underlying random angular ATP and aimpoint location errors Egx 

and Egy. Then we derive the distributions of the total angular error Eg, the effective 
area | ADEW \, and the lethality L. We conclude with the derivation of dwell time tD* 
from the leakage probability pi. 

3.3.1.1. The Functional Relationship Between L and Eg. Due to assumed 
circular symmetry, the miss distance is MD = REg , 

where 

Eg   = lEgx + Eg  )     , the circular error, 

Egx = bgx + tgx, the angular error along x, 
Egy = bgy + e9y, the angular error along y, 

bgx and 6^ are constant bias terms, and 
egx and egy are random error terms. 

To obtain the efFective area | AEFF 1 = 1 A AIM H ADEW I as a function of the miss 
distance MD = REg, consider Fig. 3.9, where the case | AJJEW \>\AAIM I is illustrated. 

If we define AEFF = min 11 XAIM I, I XQEW \ j, and if A AIM C ADEW, then | AEFF I= 

I AAIM 1= AEFF. At the other extreme, if AAIM H AQEW — $■> then | AFFF 1= 0- 
Between these two extremes, we assume that | AFFF I decreases linearly. The case 
\ADEW \>\AAIM I is similar, and we obtain the function shown in Fig. 3.10. 
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A        AEFF / 
\ ADEW 

^AIM 

rDEW 

ß><-4- 
rAIM 

^^J <__^/ 
"> 

Figure 3.9. Geometry used to compute AßFF (MD = REg). 

|AEFF|' 

AEFF 

Figure 3.10. The function \AEFF\   (REg). 
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r A0 A
EFF 

More explicitly, 

REe <| TJ)EW - TAIM I 

0 ,    RE6 > rDEw + ^AIM 

REB- | TBEW - TAIM \\ _iV ._ (3.20) 

AEFF |= < 

AEFF [} ~ 
2min{rr>EW,rAIM }    >     ' 

otherwise . 

This function exhibits | AEFF I as a function of the random miss distance MD = REe, 
and of three additional parameters AEFF, rpßw and r^iM- Combining Eq. (3.20) 
with Eq. (3.16), we obtain lethality L as a function of REQ, as desired. To get the 
distribution of L we first compute the distribution of MD. 

3.3.1.2. The Probability Distribution of MD. Recall the angular errors E$x = 
bgx + eex and Ee2 = be2 + %, whose distributions are JV^&^jCTi) and N(be2 o<i), re- 
spectively. Therefore, REg1 ~ N(Rbß1 R<T\) and REe2 ~ N(Rbe2,R<r2). We seek the 
distribution of REQ = (Eg + E2, )1'2. To simplify notation, consider two independent 
random variables X and Y with means fix and ny and common variance a\. Their 
joint density is 

fxy(x,y) 
1    -[((x-//x)2 + (j/-^)2)/2^ 

(2x^)1/2 
(3.21) 

If we define // = (fix + A*2/)     ' the probability density of the random variable Z 

(X2 + y2)1/2, as given by Papoulis (1965), is 

(±exp(-(z2 + fi2)/2al)l0(^)    ,   z>0 

,   z <0 

where Jo is the modified Bessel function of order zero: 

1    r2w a ^     u2" 

n=0 

Rewriting this, and assuming z > 0, 

(3.22) 

(3.23) 

AW=>K- äM- äl ^ö^(iS)2" -      (3-24) 
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and the complement of the cumulative distribution of Z is 

In Appendix B we show that this distribution may be approximated by a normal 
distribution: 

p(Z > z) = $ 
go - z2 + ft2 

-,1/2 
2(z2 + fi2)\ 

(3.25) 

1/2 
For our problem, Z = REg and /u = ((Rhi)2 + (Rbß2)

2)      and <r0 = Ra, hence: 

K^>^) = K?^ 
(l?<7)2-<22 + ^ 

{2R?a\d2 + /z2))1/2 ),   <*> (3.26) 

3.3.1.3. The Probability Distribution of L. We start by deriving the cumulative 
distribution (CDF) of \AEFF I- Referring to Fig. 3.8 and Eq. (3.20), define 

pQ = prob( |AEFF1= OJ = prob{RE9 > rDEW + rAIMj , 

and 

pi - prob(\ AEFF1= AEFF) = probyREo < \ rDEw - ^AIM I j 

We approximate the CDF of | AEFF I as follows (see Fig. 3.11): 

( 0 ,   a < 0 

P(\AEFF\< a)= < 

Po 

1-pi 

1 

^  , (l-pi-po)« 

a = 0 

a — AEFF 

a > AEFF 

0 < a < A°s EFF 

(3.27) 

where the events {| AEFF |< 0} and {| AEFF \- AEFF) are equivalent to the events 
{REg > rDEw + rAIM} and {REg < \ rDEw ~ TAIM I}, respectively. 
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CDF(a) 

AEFF 
EFF I =» 

Figure 3.11. The Cumulative Distribution Function (CDF) of | AßFF I- 

Finding the CDF of L is now easy: 

p(L < I) = < 

0 

Po 

I-Pi 

1 

Po + 
(I-Pi-Po) 

*EFF 

l<0 

1 = 0 

l = QtD 

l>QtD 

0<l<QtD 

(3.28) 

3.3.1.4. Deriving the Dwell Time tD*. Recall that pK = p{L > H). But 

pK=  [  p((L >h)A(H = hj^dh 

=  f  p{{L>h)\H=h)fH{h)dh. 
J H 

Using the approximation /.ff(h) to the Gaussian density shown in Fig.3.12, we have 

PK = TZ- P(L> h)dh • (3-29) 
WH JaH-l.hcrtj 'HH-l.'ötTH 

Substituting the expression for L, 

PK(t) = ^— P(AEFF> 

hAEFF\dh (3.30) 
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Even though we have the distribution of AEFF (see Eq. 3.27), and pK is monotonically 

increasing in tD, the derivation of the unique inverse tD = P~K(PK) is tedious, and it 
is reported in Appendix C. The resulting expression for tD   is: 

' qoL + 3*HPK + [(go£ + Z°HPK? - (go + pi)(go - Pi)£2]1/2 

<5(go - Pit) 

tD* = < 

0<pK< 

t*H(qo-pi) 
Q(gO - PK)        ' VH 

oo 

/i jpi + 1.5<7ffg0 

,    go < PK < 1 

where 

go =1 - Po 
(3.31) 

FH(h)   1.0 

HH - 1.5 aH       HH uH +1.5 aH 

> h 

Figure 3.12. For our problem, this is a good approximation to the Gaussian cumulative 
distribution. 
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3.4 Designing Smooth Command Schedules to Minimize Hard- 
ware Jerk 

To the platform pointing controller, a target schedule is simply a sequence of step 
inputs. Unless some smoothing or shaping is applied to these commands, various vibra- 
tional modes could be excited on the platform, resulting in unacceptable increases in 
settling time of the beam control hardware, the platform forebody in particular. But a 
brief glance at the typical threat distribution of Fig. 3.13 suggests that an effective fast 
steering and forebody control law could be developed where the lighter fast steering 
subsystem could be used to direct the beam from target to target, while the heav- 
ier forebody and the main body slowly drift through the target, thereby minimizing 
platform jerking. 

Such a control law must simultaneously solve two optimization problems—a geometry 
problem and a timing problem. The geometry problem is to find an optimal path 
through the target set, without consideration of time. The time problem is to find 
an optimal trajectory through the target set by associating optimal times with the 
various points along the path. This process is obviously subject to the constraint that 
fast steering and forebody motions are limited, as shown by the circles in Fig. 3.13, the 
radius of each circle indicating the maximum fast steering subsystem deflection allowed 
from the center, where the forebody is aimed (main body ignored here). The problem 
then essentially reduces to sweeping through the targets set with a moving circle in 
such a way that the center of the circle is moving smoothly. 

Let XjjT, r be the position of the rth target following Tk in the target sequence, and 
let tjfc+rbe the time at which processing of Tk+r starts. Then tk+T is the sum of tk and 
all the dwell and retarget times for the targets between Tk and Tk+f. 

h+r = tk + ]T if+m . (3.32) 
m=0 

Using the target sequence and the processing times tk+r, our recursive approach does 
not generate position (angular displacement step function) commands. Instead, it 
produces smooth velocity commands, expressed as displacement-time pairs (AX, At) 
as follows. 

START 

1. Assume velocity command output at time tk is (X^+r — X£   , tk+r ~~ tk)- 

2. Change velocity command to (Xj. +1 — X[B, tk+T+i — tk) if au targets between 
Tfc and Tk+r+i can be reached by redirecting only the fast steering subsystem when 
the forebody is moving along the straight-line segment from X^     to X^+T at a 
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constant velocity 

j^FB _ Xk+r+l x{* 
tk+r+1 - tk 

3. Otherwise, do not change the velocity command, and retry (X"£+r+2, tk+T+2) when 
processing of T* is complete. 

(Xk+r-1, tk+r-1 

r  
Forebody ""^u N. 
velocity 
at t = t. 

k+r+1» tk+r+1 

 > 

/ 

[
Xk+r+2'tk+r+2j 

Figure 3.13. The forebody trajectory from (XJ:B,tk) towards (XjjT+r+1, tk+r+i) may be 

extended towards (Xk+r+2:  ^fc+r+2) (as shown) if all intervening targets fall within the 
tube generated by the moving circles (each node is a target state-time pair). 

As seen from the dashed lines in Fig.3.13, the extension works for (X^+T+1, tfc+r+i) 
but fails for the next pair (-Xj+7.+2, tk+r+2) due to the excessive forebody angular 
displacement required. Except for such extreme—and infrequent—displacements, the 
algorithm continuously updates its velocity output as targets are processed and new 
targets come within the projected reach of the forebody. For the unfavorable example 
of Fig. 3.13, the output signal produces velocity outputs whose direction is indicated 
by the unit vectors assigned to each target vertex. The forebody trajectory is thus a 
smooth path through target e^-neighborhoods, as shown in Fig. 3.14, and Fig. 3.15 
exhibits the flow chart for the smoothing algorithm. Observe the following definitions 
for that chart: 
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X™(tn) = XFB{tk) + ^(l^t*™^ ~ it) , 

where t^+r is the start time of Tfc+r derived from Eq. (3.32). 

(3.33) 

(xP.tk) 

(xj,tk) Forebody 
trajectory 

Fast steering 
trajectory 

Figure 3.14. The forebody drifts smoothly through target e     -neighborhoods. 

To quantitatively estimate the smoothing characteristics of this subroutine, recall 
some elementary notions from second-order linear systems theory (Kuo 1975). For 
linear systems, "jerk" is defined as the third derivative c(3'(t) of the system output 
c(t). For a second-order critically damped system with step input U(i) of size U0 , 

c(t)u = U0(l + cjnte-Wnt) , 

whose maximum occurs at t = 4fujn and equals 

U3\t)u)       = -e-WnUo . 
V / max 

For a ramp input R of size RQ, 

c(t)R = R0\t + te -w„t 
UT, 

cW(t)R = R0u
2

n(z-u;nty 

whose maximum also occurs at t = -j-, and equals 

—Wni 

Un ■ 

\ / max 
e~Au2

nR0 

(3.34) 

(3.35) 
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Target Tk_1 processed 

Start with T^t^X^ 

I 
r=0 

I 
r-»r+ 1 

T 
Consider extending velocity 
vector to x£+r 

YES 

FT? output (X k+r_! - X k, t k+r_i -1k) 

to forebody controller 

T Continue with Tk  when Tk is processed 

Figure 3.15. Flowchart for the forebody smoothing algorithm. 
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The ratio of step jerk to ramp jerk is 

■Ajerk — 
w. FB Uo 

Ro 

where u^B is the characteristic frequency of the forebody. 

Now consider a target sequence T =< T\,... , TJ,... Tjv > whose target-to-target 
angular displacements are U =< 8\,... ,Qi,.. .0N-I >■ Then, without smoothing, if 
we define 9* = max {0; : i = 1,..., N - 1}, the forebody jerk magnitude may reach 
(u£B))36*e~4. But, using the smoothing algorithm of Fig.3.15, the smoothed jerk 
magnitude is at most (oj^B)3Rma.xe~4, where 

-Rmax = max 

$ h,h 

E3(^ + ^) 
{rJfcl,...,rib2}craiid 

\\Xntk)-XFB(tk)\\<e^ 

k = ki,..., &2 • 

8k* k* 

Z-ir=k*\ r +r ) 

The jerk attenuation ratio is thus at least 

A.-flL 
-Km 

(3.36) 

For many reasonable threats—especially for target-rich ones—the angular distance 
9kltk2 

wul be small compared to the sum Ylr=i 1 ^kr,kr+i °f intervening distances, and 
k2 — ki will be close to the total quantity N of targets. In such cases, the jerk attenuation 
ratio will be very large, possibly infinite, since the forebody may not have to be moved 
at all. Consider a more conservative example where 

N = 100 

"1 — ""2 = 
N 
2 

n 10 sec-1 

*? = 0.1 sec 

*? = 0.3 sec 
0* = 10 mrad 
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0k* jL* = 50 iiirad 

Then 
„ 50 mrad        n „        . , 
Ämax = ~—pr-;  = 2-5 mrad/sec > 50 x 0.4 sec 

and 
10 x 10 mrad/sec 

At = —— rH = 40, 
2.5 mrad/sec 

a considerable reduction in forebody jerk. 
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4. The Target Scheduling Algorithm 
for the Boost Phase 

4.1 Introduction 

In previous chapters, we formulated the Target Scheduling Problem (TSP) as a sta- 
tistical decision problem consisting of three major subproblems, and in Section 2.2.2.2 
and Chapter 3, we provided a functional overview of DDTS. 

Consider the threat illustrated in Fig. 4.1, where T,y is the jth target to be processed 
by deadline di. Although we address the boost phase in this section, we should note 
that during midcourse the point-targets shown as dots in Fig. 4.1 represent "clouds" of 
objects. These clouds contain various mixtures of Re-entry Vehicles (RVs), decoys, and 
replicas, and we shall examine these representative dots in greater detail in Chapter 5. 
Observe that the threat pictured in Fig. 4.1 is rather benign, with clearly separated 
deadline classes. In general, most complex threats must be assumed to contain targets 
whose positions are not as conveniently correlated with their deadline. 

di 
di 

Figure 4.1. A threat with m deadlines showing the m deadline-equivalence classes. 

we In this chapter, we focus on algorithmic and computational issues. As before 
emphasize ground-based and space-based directed energy weapons in the boost phase, 
deferring to Chapter 5 any extensions to the midcourse discrimination phase. We only 
discuss the principal flows of the DDTS algorithm, avoiding unessential details about 
its software implementation. While we provided a brief version of "heaps" to illustrate 
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how paths and tours are manipulated in the computer, we have deliberately omitted 
any discussion of pointer arithmetic, dynamic memory allocation, and other powerful 
features of the C-language used in our program. These and other implementation 
details can easily be extracted from C-language users' manuals and from the source 
code of the DDTS program. 

Viewed as a computational module, DDTS is a multiple-input-multiple output system 
specified by a large number of parameters. Referring to the simplified description in 
Fig. 4.2, the threat information consists of a threat assignment T = {T; : i = 1,..., N}, 
each target (label) T{ a vector specifying the position and velocity vector, deadline and 
release time, type, vulnerability radius, aspect angle, hardness mean and variance, and 
value of the target. 

Optimization criterion H 
Constraints F 

Treat information 
7, y    —> 

Fast steering commands 
Forebody commands 
Platform commands 
Target sequence (ri) 
Target dwell times (tD) 

DEW Platform Parameters (XD) 

Sensor Information (Xs ) 
Environment and background information (XjO 

Figure 4.2. Input-output sketch of DDTS. 

The DEW platform is specified by an Acquisition, Tracking, and Pointing bias and 
variance, a pointing state, a "field of action" (field of regard), position and slew sat- 
uration levels, damping constants, and desired settling accuracies for the fast steering 
subsystem, the forebody, and the main platform body. The DEW itself is defined by 
its beamwidth, its frequency, its power, and its bias and jitter. The environment is 
specified by the engagement geometry and the relative state of the DEW and each 
target, but no specific background information is considered in the current version of 
the algorithm. 

Sensors are characterized by their position and velocity vectors, their beamwidths, 
and their tracking errors. The target ID information provided by the sensors is repre- 
sented as a discrimination matrix [p,j] whose entries pij specify the probability that a 
target of type j will be classified as one of type i. 
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The optimization criterion H defines the measure by which the performance of DDTS 
will be judged. For target scheduling in the boost phase, this measure is essentially the 
same as that used in judging the overall platform performance, since target scheduling 
is the principal platform management task. Consequently, we use expected target 
leakage risk as a criterion during the boost phase. As we discussed in earlier sections, 
minimizing this risk is a complex optimization process subject to various constraints 
like deadlines, release times, and energy limits, and these are specified in the constraint 
structure F. 

To provide a more detailed explanation of how DDTS computes an optimal schedule, 
we discuss the algorithm from a perspective where the problem is broken into just two 
major parts, a time optimization and a pK optimization, as shown in the two-level 
approach of Fig. 3.1. 

The lower-level inner loop is a "local" optimization subroutine where, for each pK 

considered in the outer loop, target schedules are found that reduce target completion 
times until no tardy targets remain or until minimum completion times are attained. 
In the event that some tardiness remains, least important targets are rejected in ac- 
cordance with the rejection rule r (Eq. (3.7)) until all targets scheduled for processing 
can meet their deadline. 

This time-line optimization is usually not sufficient, of course, since total leakage risk 
typically increases as dwell times are reduced past a certain minimal value. To account 
for this time-lethality trade-off, DDTS includes an outer loop where total leakage risk 
is minimized by finding the optimal value of pK using the BRENT Algorithm (Brent 
1973; Press et al. 1988). 

4.2   Local Optimization: Optimal Sequencing and 
Target Rejection 

Four major functions are performed in the inner optimization loop (see Fig. 4.3): 

1. Initial tour construction. 

2. Tour verification. 

3. Tour improvement. 

4. Target rejection. 

Even though dwell times are not optimized in the inner loop, their values are essential 
in the computation of target completion times and tour time-lines. In each of the tour 
calculations, dwell times were obtained from pK values fixed in the outer loop. 
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42.1 INITIAL TOUR 
CONSTRUCTION 

n  value        Threat information 

J i 
Find initial tour 

I 
Compute target dwell 
times from pK 

± 

42.2 TOUR 
VERIFICATION 

423 

42.4 

Update target time 
and state 

No 
Next target on 
tour 

X   Any  X 
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^\.  still violated? / 

TARGET 
REJECTION jfVes 

Bypass least 
important target 

Figure 4.3. The inner loop of the DDTS algorithm is a 
local optimization loop with four major subroutines. 

72 



4.2.1. Initial Tour Construction (Subroutine INITOUR) 

Using appropriate kinematic information about the targets and a fixed pK value 
received from the outer loop, the first operation in the inner loop is to construct an 
initial tour through the threat. Considering that all the targets are moving, this is an 
interactive process which alternates between the three major tour construction steps 
described in Chapter 3 and a target update process where state updates are computed 
as a tour is developed. A more detailed view of INITOUR, the algorithm that actually 
finds the initial tour, is provided in Fig. 4.4. 

p  value 

i 
Threat 
information 

i 
Find deadline 

equivalence classes 

I 
Update target states 

for this class 

I 
Connect this class to 

previous class 

I 
Find shortest path 
through this class 

i 
Determine exit time 

for this class 

No 

Fetch next 
class 

Yes 

To Tour Verification 

4.2.1.1 

4.2.1.2 

4.2.1.3 

■FINS A       43.1.4 

4.2.1.5 

Figure 4.4. The INITOUR initial tour construction subroutine. 

73 



4.2.1.1. Computing Deadline Equivalence Classes. The first step in conduct- 
ing a tour is to construct and link deadline equivalence classes, sets of targets that 
share the same deadline. To further refine the deadline partition and the ordering 
of the targets, deadline-equivalent targets are further ranked in accordance with their 
release or availability times. Hence, two targets are equivalent if they have the same 
deadline and release time (lexicographic order (Aho et al. 1974)). 

In the DDTS algorithm, target classes are linked lists of objects, and class construc- 
tion involves several standard operations: sorting, ordering, inserting, deleting and 
searching. Because there may be many deadline equivalence classes, and each may 
have to be recomputed many times due to the insertion or deletion of targets through- 
out an engagement, the computational efficiency of the class construction process is 
essential. We have chosen a heap* as the basic data structure for doing this job. Let 
us briefly review heaps and their use. 

4.2.1.1.1 Heaps. Consider a scalar ordering < on the real numbers and a set 
H = {a,- : i = 1,..., N} of N numbers. Then H is & heap (see Fig. 4.5), if its elements 
satisfy the relation 

alJm<aj,l<y/2\ <N, (4.1) 

where [x\ is the smallest integer greater than x. A more detailed but informal discussion 
of heaps was taken from Press et al. (1988) and is provided in Appendix D. 

Sorting with heaps is done in two major steps. 

1. Heap Construction. 

2. Heap Search. 

Figure 4.5.   A 12-element heap and its implied ordering.   Elements are ordered only 
"vertically" and not "laterally". 

* Press et al. (1988); Aho et al. (1974); Knuth (1973); Sedgewick (1988). 
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4.2.1.1.2 Heap Construction. Depending upon whether the set H of data 
is available as a whole (concurrently) or only one element a,- at a time (sequentially), 
an algorithm like HEAPIFY (Horowitz and Sahni 1978) (also BUILDHEAP (Aho et 
al. 1974)) or INSERT (Horowitz and Sahni 1978) is used, respectively. The latter 
constructs a heap one element at a time, requiring 0(n log n) work, whereas the former 
benefits from having all the data at once and only requires 0(n) to construct the heap. 
Due to constant target updates (new targets or destroyed targets), DDTS uses insertion 
to construct a heap. 

4.2.1.1.3 Heap Search. A heap only structures the data and does not by itself 
provide a total ordering. To get the ordering (sort), elements must be removed from 
the heap one at a time, largest element first. This requires 0(logn) work per element, 
or 0(nlogn) for the entire heap. 

4.2.1.1.4 HEAPSORT. Both construction and search steps have been com- 
bined into an algorithm known as HEAPSORT.* When the set H = {a; : i = 1,..., N} 
of input objects is available simultaneously, heap construction is easiest, and a worst 
case of only O(NlogN) work is required by HEAPSORT to sort the objects. In the 
sequential case where element-by-element insertion is required, 0(2NlogN) may be 
needed (Horowitz and Sahni 1978). Other algorithms have been developed to sort data 
quickly, but only QUICKSORT is worth mentioning here. On the average, QUICK- 
SORT actually requires only O(NlogN), a factor of 2 better than the worst case for 
HEAPSORT, which also requires about as much on the average. But the fact that 
the average and the worst case behavior of HEAPSORT were comparable and that 
QUICKSORT is actually an 0(N2) algorithm in the worst case were sufficient reasons 
to choose HEAPSORT for our problem because there is no evidence that many threat 
scenarios will be "average" in any sense. 

4.2.1.2. Updating Target States. We define the exit time of a class as the 
completion time of the class or, equivalently, the completion time of the last element 
of the class. The exit time te of an n-target class is thus 

»=i      *=i 

where, in accordance with the retarget and dwell time calculations of Sections 2.2.1.3 
and 2.3.3.1, 

i^L   is the retarget time to Target 7r(z) in position i, 

t^x   is the dwell time of Target n(i) in position i, and 

t°.   is the exit time of the previous class. 

* Knuth (1973); Sedgewick (1988); Horowitz and Sahni (1978). 
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Even though the state of each target is time-varying, only one clock time is assigned 
to each equivalence class and to its target members during initial tour construction. 
This provides considerable computational economy and will be checked later during 
tour verification. Using the same definitions as in Eq. (4.2), the clock time tc of a class 
is the "average" clock time of its members, also called the class time: 

»=i t=i 

(4.3) 

Using this clock time and the initial states of all targets in the class, Eqs. (2.29-2.32) 
can be used to calculate the states of targets at exit times and at all future class times. 

4.2.1.3. Connecting Target Classes. Target class connection is done by re- 
cursion. A path through a target class starts at a target determined by the previous 
class and ends at the target chosen to minimize the total retarget time from the start- 
ing target to the first target in the next class. Consider the three contiguous classes 
shown in Fig. 4.6. If T\ is the starting target in C2 (determined by the topology of 
C\) then, given the tour shown in C2, Ta and T\, are the only two potential succes- 
sors to T\, and only two paths are allowed through C2, ^1 =< Ti, T&, Tx, Ta > and 
7T2 =< Ti, Ta, Tx, Tf, >. Whether TT\ or 7T2 is chosen is determined by the following 
cost comparison: connect Ta to Tc if 

tR(Ta, Tc) - tÄ(Ti, T«) < tR(Tb, Td) - iÄ(Ti, Tb), (4.4) 

otherwise connect Tj to T^. 

Figure 4.6. Classes are connected to minimize retarget time. 

4.2.1.4. Shortest Path Through a Class. In the previous section, a shortest 
path through class C2 was assumed. As discussed in detail in Section 3.1, this path is 
found using the Farthest Insertion Algorithm (FINSA). 
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4.2.1.5. Class Exit Target and Exit Time. The exit target is found as shown 
in Section 4.2.1.3. The exit time was derived in Eq. (4.2), where it was also called the 
completion time. 

4.2.2. Tour Verification 

An initial path through the target set was developed using the INITOUR subroutine, 
assuming that all the targets in any deadline equivalence class have the same clock time. 
During tour verification, the validity of this assumption is examined by verifying that 
all the deadline and energy constraints are met along the chosen path, as shown in 
Fig. 4.3. If they are, nothing remains to be done. If not, an improved path through 
the targets must be found, and this is the subject of the next section. 

4.2.3. Tour Improvement 

In Section 3.1.3, we motivated the need for tour improvements, and we presented 
a brief discussion of the 2-opt procedure. Now we provide a simple flowchart of how 
2-opt is used in the DDTS algorithm (Fig. 4.7). 

The tour improvement subroutine is simple. For each candidate edge-pair (e^, eq) 
there must be at least a local timeline improvement (local to the pair (e^, eq) be- 
fore testing whether the constraints are still met for all targets Tm preceding Tk, the 
last target whose position was altered by 2-opt. Note that the routine is a bit more 
complicated than shown, due to the recursive nature of path improvements. As paths 
are improved, new collections of pairwise improvements appear, and qmax and kmax 

must be reset periodically. To avoid combinatorial "runaway", only a given number of 
iterations can be afforded, and this "maximum count" is set adaptively as a point of 
marginal diminishing returns is approached. 

One effective way to control runaway is to limit the range of the 2-opt process by 
limiting qmax and kmax to only a fraction of the quantity of targets preceding the first 
late target Tj. 

Due to release times, a marginal timeline improvement may not assure a global 
timeline improvement. Only when a global improvement is assured is the pair (e*, eq) 
accepted and is it "cemented" in the tour. But the first late target Tj that initiated 
2-opt may still be late, and the process may continue until the maximum count is 
reached. 
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To Target 
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Yes 

Next Target Tj+1 

Figure 4.7. Simplified flowchart of the 2-opt tour improvement subroutine. 

78 



4.2.4. Target Rejection 

If Tj is still late after the maximum allowable number of pairwise exchanges, one 
or more targets must be ignored, as shown in Figs. 4.3 and 4.8. This is accomplished 
by organizing all targets into a heap—the "r-heap"—using the rejection ratio r of 
Eq. (2.50) as a criterion, the target with lowest r-value considered as the maximal heap 
element (see Section 4.2.1.1.1 for a more detailed discussion of heaps). O(log N) work 
is required to pull the maximal target from the r-heap, and another O(log N) work 
to "reheap" the remaining targets. Returning to Fig. 4.8, this target rejection process 
must halt since there is at least one target that satisfies its deadline constraint. 

As a closing comment for this subsection, note that the rotation and position ex- 
tensions described above must be executed repeatedly as new target sequences and 
schedules are tried during the optimization process. To avoid unnecessary repetitions 
of these calculations, the future positions of all the targets are calculated just once 
and stored in a look-up table for further reference. Further computational gains are 
made by defining these future target states on a time scale of appropriate granularity, 
typically one second. 

Tj still late 

__J  
Pull maximal target 
from top of r-heap 

I 
Pull target from tour 

and patch tour 

YES 

Next Tj 

Figure 4.8. Target rejection is accomplished using the r-heap. 
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4.3 Global Optimization: Optimal Dwell Times 

The outer loop of DDTS shown in Figs. 2.5 and 3.1 minimizes the leakage risk by 
finding an optimal value of pR. By referring to this process as "global optimization" 
we are abusing conventional terminology somewhat,* and we should actually refer to 
it as outer optimization since we have in effect a function f(x, y, z) of three variables 
for which we seek a minimum, 

/* = minif(x,y,z)\ = min {min {min {/(x,y,z)}}| , (4.5) 
x,y,z *• ' x       *■    y       *•    z ' J 

where x is the outer variable representing p . This outer loop is a scalar optimization 
loop whose convexity properties were discussed in Section 2.2.2, where we showed that, 
as a function of pK, the objective function 72.(jpK) is a jagged function that exhibits 
several local minima, potentially one for each rejected target. But, unless deadlines are 
extremely hard and the threat environment is target-poor, jaggedness is not severe and 
the risk function behaves in a relatively smooth and convex manner. So it is reasonable 
to consider a golden section search (Press et al. 1988) since it is designed to handle 
the worst possible case of function minimization. But if the function is nicely parabolic 
near the minimum, then the parabola fitted through any three points should drive us 
in a single leap to a point very near the minimum. Since an abscissa is sought rather 
than an ordinate, the procedure is technically called inverse parabolic interpolation 
(Fig. 4.9). 

As Press et al. (1988) explain it, the formula for the abscissa x which is the minimum 
of a parabola through three points /(a), /(&), and /(c) is 

1 (b - q)2[/(6) - /(c)] - (b - cf[f{b) - /(g)] 
+ 2  (b - a)[f(b) - /(c)] - (6 - c)[/(6) - /(a)] " ^ ^ 

This formula fails only if the three points are collinear, in which case the denominator is 
zero (minimum of the parabola is infinitely far away). Note, however, that Eq. (4.6) is 
as happy jumping to a parabolic maximum as to a minimum. No minimization scheme 
that depends solely on Eq. (4.9) is likely to succeed in practice.. 

The exacting task is to use a scheme which relies on a sure-but-slow technique, like 
golden section search, when the function is not cooperative, but which switches over to 
Eq. (4.6) when the function allows. The task is nontrivial for several reasons, includ- 
ing these: (1) The housekeeping needed to avoid unnecessary function evaluations in 
switching between the two methods can be complicated. (2) Careful attention must be 
given to the "endgame," where the function is being evaluated very near to the roundoff 
limit of Eq. (4.6). (3) The scheme for detecting a cooperative versus noncooperative 
function must be very robust. 

Papadimitriou and Steiglitz (1982); Press et al. (1988). 
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Figure 4.9. Convergence to a minimum by inverse parabolic interpolation. A parabola 
(dashed line) is drawn through the three original points 1,2,3 on the given function (solid 
line). The function is evaluated at the parabola's minimum, 4, which replaces point 3. A 
new parabola (dotted line) is drawn through points 1, 4, 2. The minimum of this parabola 
is at 5, which is close to the minimum of the function. 

Brent's method (Brent 1973) is up to the task in all particulars. At any particular 
stage, it is keeping track of six function points (not necessarily all distinct), a, b, u, 
v, w, and x, defined as follows: the minimum is bracketed between a and 6; x is the 
point with the very least function value found so far (or the most recent one in case 
of a tie); w is the point with the second least function value; v is the previous value of 
w; u is the point at which the function was evaluated most recently. Also appearing in 
the algorithm is the point xm, the midpoint between a and b; however, the function is 
not evaluated there. 

You can read the code (Brent 1973) to understand the method's logical organiza- 
tion. Mention of a few general principles here may, however, be helpful: Parabolic 
interpolation is attempted, fitting through the points x, v, and w. To be acceptable, 
the parabolic steps must (1) fall within the boundary interval (a, 6) and (2) imply a 
movement from the best current value x that is less than half the movement of the 
step before last. This second criterion insures that the parabolic steps are actually con- 
verging to something, rather than, say, bouncing around in some noncovergent limit 
cycle. In the worst possible case, where the parabolic steps are acceptable but useless, 
the method will approximately alternate between parabolic steps and golden sections, 
converging in due course by virtue of the latter. The reason for comparing to the step 

81 



before last seems essentially heuristic: experience shows that it is better not to "punish" 
the algorithm for a single bad step if it can make it up on the next one. 

Another principle exemplified in the code is never to evaluate the function less than 
a distance TOL from a point already evaluated (or from a known bracketing point). 
The reason is that, as we saw in Eq. (4.6), there is simply no information content in 
doing so: the function will differ from the value already evaluated only by an amount 
of order e, the runoff error or function jaggedness. Therefore in the code there are 
several tests and modifications of a potential new point, imposing this restriction. This 
restriction also interacts subtly with the test for "doneness," which the method takes 
into account. 

A typical ending configuration for Brent's method is that a and b are 2 x x x TOL 
apart with x (the best abscissa) at the midpoint of a and 6, and therefore fractionally 
accurate to ±TOL. 

Note that TOL should generally be no smaller than the square root of the computer's 
floating point precision, and that TOL can be set sufficiently high that, within accept- 
able risk errors, local minima are ignored as feasible solutions, and only global minima 
are obtained. 

As concluding comment on the outer optimization loop, observe that dwell times t 
are controlled and specified by values of pK.  The relationship between the tD vector 
and pK is monotonic and is formally derived in Appendix B. 

4.4 The Ground-Based DEW 

We have focused thus far on DEW systems that are space-based. When laser energy is 
derived from a ground-based station, a relay or collection subsystem must be added to 
the DEW system, and additional articulation constraints must be introduced. Referring 
to the hypothetical design of Fig. 4.10, the DEW platform must remain oriented so that 
proper alignment can be maintained between the collector ("catcher") C, the fighting 
mirror FS, the target T, the base B, and the forebody FB. If we define the vectors 
as in Fig. 4.10, we have the following angular constraint on the forebody-to-catcher 
angular position 6     : 

0      > 7T - Bmax - 6max , (4.7) 

or 
YE   . YE / x 

||xfr||||x*  || -cos V ~ $™x ~ M ■ (4-8) L
Dr Nil ^DB 

The constraint is thus 

XDT'XpB < _rnJaFB >QC \ 
I vE llll vE II — cos\umax ' °max) 
\ ADT INI ADB II V y 

(4.9) 
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The inclusion of this constraint in the expression for retarget time (Eq. (2.21)) yields 

/        QFB \ /       ßFB \ 
*f(0 = 4s*M + 4B1t&v(°i-^r) +tU,{i)U(dl—^-)+kGBLU(A + B), (4.10) 

where 
YE  .YE 

A _        *DT ^DB d 

II *lr 1111*1* II' 

= «w(«2L-«£.,) 
Typically, kcBL wm be a large number since considerable time may elapse until a 
violated constraint is again satisfied. 
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5. Scheduling Targets During the 
Midcourse Discrimination Phase 

5.1 Introduction 

During the midcourse and terminal interception phases, the offense may attempt to 
conceal its RVs by releasing a mixture of decoys and RV replicas during the post-boost 
phase. This obviously complicates the threat assessment process and forces the defense 
to expend additional resources to compensate for the increase in threat uncertainties. 

Consider a midcourse threat consisting of a collection W = {wi : i — 1,..., 111} of 
1I1 threat clouds w,, each cloud having a density mi of objects or targets, of which r; are 
RV replicas, d{ are RV decoys, and n; are actual RVs, as shown in Fig. 5.1. While some 
of the information needed to effectively allocate defensive resources to such a threat 

•IS *-* Directed 
energy 

platform 

Replic 

Target 
Clouds 

Figure 5.1. In response to an interrogation pulse from the DE platform (D), targets emit 
a response beam that may be observed by one or more target sensors (Sj) for target 
classification. 

85 



is collected from a variety of sources, the most reliable and timely knowledge about the 
targets is acquired during the real-time task of target discrimination, also referred to 
as target classification or target identification. 

One way to accomplish this task during midcourse is to deploy a network of directed 
energy devices and sensors, as in Fig. 5.1, each device designed to illuminate or inter- 
rogate the target in some way, and each sensor stationed to observe and process the 
results of such an interrogation in order to classify each object as an RV or as a non-RV. 
A promising concept involves Neutral Particle Beams (NPB) stationed on platforms in 
low or high earth orbit, one beam per platform, and each platform assigned a subset of 
targets by a battle manager. Each target T is sequentially illuminated for a duration 
of r seconds, regenerating neutral particles whose quantity and energy may be used by 
the sensor network to decide—or at least to guess—T's type. Although we emphasize 
the NPB concept in this report, the methods we have developed apply to virtually any 
active target classification and scheduling problem, and to many passive ones as well. 

During this midcourse discrimination phase, the major objective of the platform is 
to process the collection of targets assigned to it by the battle manager in accordance 
with a schedule that maximizes overall platform performance. In attempting to achieve 
this optimality, a precarious tradeofF develops between the statistical confidence in the 
classification estimates and the time required to reach that confidence. Referring to 
Fig. 5.2, the risk of misclassifying targets decreases as more time is allocated to the 
discrimination process, but the risk of missing deadlines and rejecting targets then also 
increases since the time line is stretched out. 

Interrogation time 

Figure 5.2.   As interrogation time r is increased, classification errors decrease, but less 
targets can be processed by their due date. 
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Similar to the boost phase, where leakage probability was our major optimization 
variable, the interrogation time r is the most effective control variable during the 
midcourse discrimination task. But the tour optimization methods developed for the 
boost phase are needed here as well because in most scenarios retarget times still 
account for a significant consumption of the allocated time budget. 

To gain some insight-into our approach, consider Fig. 5.3, where a battle manager 
hands over a target assignment to the NPB platform. Because the battle manager's 
knowledge of the threat is incomplete, this assignment contains only generic statistical 
information: 

1. Gloud position and velocity centroids (no individual target state 
information). 

2. Deadlines and release times. 

3. Cloud weights and structure. 

4. A-priori target type information. 

This information is refined in real time by on-board tracking and classification algo- 
rithms as shown in Fig. 5.3. Following the flow of this figure, and starting with an initial 
interrogation time of r0 seconds, the first step is to estimate the physical response of 
the target to our NPB pulse of r seconds, and this requires the modeling of several 
intermediate physical steps, as shown. The response of a target to an interrogation 
pulse is observed by the sensor network, and all sensor detections are fused into a col- 
lective network output. In this report, we employ the very simple fusion policy where 
the network response equals the response of the sensor whose signal-to-noise ratio is 
the largest. 

The network output is used during the Bayesian update process where prior infor- 
mation about the cloud densities and type distributions are improved into posterior 
density functions. Together with the losses L{ßi \g.) incurred by classifying a target of 
type Qj as one of type 0;, the posteriors are used to calculate the expected classification 
risk KC(T) discussed in detail below. Given the interrogation times r = {nj}, the next 
step is to calculate the minimal rejection risk KT{T), as we did for the boost phase. 
Recall that this involves finding optimal tours 7r* through the threat and, whenever 
necessary, requires rejecting targets in accordance with a rejection criterion r. While 
this too will be discussed later, we should mention that, during midcourse discrimina- 
tion, we employ a two-tier approach to tour construction. In the bottom tier, targets 
have their usual representation as points or vertices in our graphs, but in the top 
tier, these vertices represent entire threat clouds. Tour optimization is first started at 
the top tier by finding the best tour connecting cloud centroids. This is followed by 
finding the shortest tour relating the targets within each cloud.  This is obviously an 
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iterative process since the calculation of cloud tours also requires some estimate of 
inter-target retarget times, but it results in considerable computational speed-up and 
usually involves a negligible compromise in overall tour quality. 

The total discrimination risk is the sum KTOT(T) — KC(T) + ftr(r), and this risk is 
minimized by finding the optimal interrogation time r,y common to all targets. Similar 
to equalizing all the p^'s during the boost phase, forcing all r,y's to be the same ad- 
mittedly yields only a suboptimal solution since, in general, each target could require 
a different interrogation time to achieve global optimality. But our calculations with a 
similar suboptimal approach in the boost phase have shown that errors resulting from 
equal Ty's are acceptable when computational complexity is considered. 

Even though target scheduling is the main focus of this report, it should be clear 
that no acceptable scheduling solution can be obtained without first solving the target 
classification problem because targets whose identity is not known cannot be effectively 
scheduled. Several methods for identifying and classifying objects have evolved over 
the years,* and these include methods based on Minimax, Bayes risk, and neural or 
Hopfield nets. In strategic defense problems, the concept of "k-factor" has acquired 
unargued acceptance in some circles (Holmes and Rocklin 1990; Rocklin and Tolleson 
1986). 

We rejected minimax approaches because they would lead to highly improbable, 
non-unique, and time-consuming solutions. We also had several reasons for rejecting 
neural or Hopfield nets. Such nets do very poorly in time-varying, high-dimensional, 
and stochastic situations where costs of classification errors may vary, and where con- 
siderable modeling robustness is required. Target scheduling also requires not only the 
effective processing of on-line data, but also the prediction of vehicle states far into the 
future. In reference to ^-factors, we demonstrate below in greater detail that midcourse 
discrimination problems are strongly non-Gaussian, and that costs of classification er- 
rors may vary considerably. Furthermore, instead of attempting to meet a predeter- 
mined performance criterion that almost surely will be nonoptimal, our scheduling 
strategy is based on an optimization approach that assures the minimization of total 
risk, at least in principle. 

We therefore selected a classical Bayesian risk approach to target classification and we 
made the following assumptions. All objects in the same cloud have the same deadline 
and release time, and only one object is illuminated at a time, with a uniform beam 
that has an abrupt drop-off at its edges (a "cookie-cutter" beam). This simplified 
model can be improved by introducing an /-spot model associated with a Gaussian 
beam, as we did in the communication study reported in Corynen and Glaser (1992). 
If the effects of chaff, loose booster shells, or other forms of intentional or accidental 

* Ferguson (1967); Berger (1980); Duda and Hart (1973); Jain (1989); Devijer and Kittler 
(1987); Joachimsthaler and Stan (1988); Kochler and Evenguc (1990); Seber (1984). 
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debris turn out to be significant, these can be included by adding another class to the 
problem. 

While we do not explicitly model additional time delays due to: the time-of-flight 
of neutral particles; their dispersion, processing, counting, and integration; and other 
waiting times throughout the communication chain, these delays can easily be included 
in the dwell times allocated to the targets. 

This chapter is structured much like Chapter 3. First, in Section 5.2, we introduce 
the Bayes Risk approach to classification, and we show how it fits into the decision 
paradigm developed in Chapter 2. Then, in Section 5.3, we address the midcourse 
target scheduling problem, and we contrast this problem with the boost phase problem 
by showing how their solutions differ. 

5.2 The Target Classification Problem 

Coupled with appropriate physical and geometric models, the Bayes Risk approach 
to classification* is a powerful yet rather straightforward way to obtain optimal object 
or feature classifications in dynamic environments where measurements are corrupted 
by various non-Gaussian uncertainties and sources of noise, the costs of classification 
errors vary considerably, and accurate classifications are needed in real-time. 

Before we discuss the statistical situation, let us review the standard determinis- 
tic pattern recognition problem (Duda and Hart 1973; Jain 1989): Consider a set 
0 = {dli ■ ■ ■ J 6c) of c classes (also called states of nature). In the Target ID Problem, 
these are the targets that must be classified or identified. Classes in 9 are observed 
or measured via an n-component feature vector x = [x\,... ,xn] ranging over an n- 
dimensional feature space F whose points are called patterns. With each class 6i 6 6 
is associated a subset Fi C F such that a feature observation (pattern) x is identified 
with class 0; whenever x € Fi. Each class 6i is typically an equivalence class whose 
points are called class instantiations. In some definitions, a vector [ai,... ,ac] of such 
instantiations is also called a pattern, but we adhere to the first definition in this report. 

In the statistical pattern recognition problem, classes are similarly defined, although 
in cases of unsupervised learning* these classes are not well known. We only dis- 
cuss supervised learning in this report, and classes are assumed to constitute a set 
6 = {0i,... ,0C}, as before. The measurement process is subject to statistical errors 
and the features are characterized by conditional probability densities p(x \ß{) on the 
observations, one density for each class 0; € 8. Upon observing x £ F, a more dif- 
ficult decision must therefore be made in the statistical case to determine the class 
9i associated with this observation.   This decision requires the selection of one of m 

* Ferguson (1967); Berger (1980); Duda and Haut (1973); Jain (1989); Devijver and 
Kittler (1987); Lawler (1971a). 

t  Duda and Hart (1973); Jain (1989); Devijver and Kittler (1987). 
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possible actions from an action set A = {a\,... ,am} in accordance with a decision 
function d : F —» A. This function d is designed to minimize losses resulting from 
misclassifications. 

To find the optimal decision function d*, let L(a,- |^.) be the loss incurred whenever 
action a,- is taken when the true state of nature is Oj € #, and let p(9j) be the a-priori 
probability of occurrence of class $j. When very little is known about the d/s, a uniform 
prior density is used. 

The expected loss associated with taking decision a; when a; is observed is 

c 

R{ai\x) = YJL{ai\ej)P{9j\x). (5.1) 
i=i 

Considering that every action a,- is determined by the decision function d and the 
observation x G F, the loss function may be expressed as a function L(d(x) |^) of x, 
and the conditional risk associated with observation x is 

c 

Ä(x) = X;^(^)k-M^|x), (5-2) 

and the overall unconditional classification risk is 

R =  I R(x)p(x)dx) = f J2L(d(x) \9)jtßj \x)p(x)dx. (5.3) 

The posterior density p(8j \x) can be computed from the prior density p(9j) and the 
conditional observation density p(x |^) by Bayes' rule: 

P(6> lx) ~ ~~pjx~) ' (5'4) 

where 

K*) = J>(*k)M)- (5-5) 

The density p(8j \x) is called the Bayes a-posteriori (posterior) density, and the risk 

R =  I £ L(d(x) |öj)K^ \x)p{x)dx (5.6) 
JF ;=I 
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is called the Bayes Risk. The decision rule d*(x) that minimizes this risk is the Bayes 
Decision Rule, and this rule results in the minimal risk 

R*(x) = J2m \ej)p(x I^M^) . (5.7) 

A general sketch of the optimal target classification problem is shown in Fig. 5.4. 
Although we do not address it explicitly in this report, the choice of target classes and 
measurables strongly influences the quality of classifications. Several criteria are used 
in arriving at such a choice: 

1. Objectives of the classification problem. 

2. Target observability and measurability. 

3. Economy of parameters used to distinguished one class from another. 

4. Discrimination power of the measurables. 

5. Computational burden. 

6. Overall discrimination optimality. 

7. Technological and environmental constraints. 

There is general agreement that a mixture of measurements of the radiance, dynam- 
ics, and geometry of the targets is needed, but the optimal selection of parameters and 
measurables is still an active research topic. 

The optimal decision rule d* makes the best use of all the information contained 
in the feature vectors x whose values represent physical responses and detections of 
the target interrogation process. Our prior knowledge about physical reality resides 
essentially in the prior distributions p(0j) and in the conditional distributions p(x |^.) 
that model the response of targets whose type is 0j. This knowledge is extremely 
varied, including information about the dynamics, basing, targeting, trajectory, and 
past history of the objects to be discriminated. Targets that may appear to have the 
same physical characteristics, for instance, can often be identified or discriminated only 
by knowing their launch points or apparent destinations. Target discrimination thus 
involves many different kinds of information that have to be fused into the p(#;)'s and 
thep(x lejYs. 

In this report, the NPB return signal is the only physical observable considered for 
discrimination, and we assume the trivial fusion policy where only the sensor with the 
highest signal-to-noise ratio is used. But for target identification (Target ID) during 
the boost phase, plume radiance data must be fused with ATP statistics, dynamics, 
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basing, and targeting information, and an efficient fusion scheme is absolutely necessary. 
We are currently addressing this problem, and a detailed treatment of the Bayesian 
fusion issue is presented in a report currently in progress (Corynen 1993). 

Returning to the unconditional risk expression of Eq. (5.6), d*(x) can be found 
without integration when it is observed that pointwise minimization of the integrand is 
sufficient to minimize the entire integral. To find d*, it thus suffices to find the decision 
rule that minimizes R(x) of Eq. (5.7) whenever x is observed. This is what is typically 
done with the Bayesian approach. 

It thus suffices to minimize the conditional risk R(x) when x is observed to guarantee 
that total Bayes risk is minimized, and no integration over the feature space F is 
required. The optimal target classification rule may therefore be stated as follows: 

If feature value vector x is observed, decide that x originated 
from a target of type 9{ if, and only if, for all k ^ i, 

c c 

5>«s) = 6i \9j)P(x |,,. )*(*;)) < E^OO = h \oMx \*M6i)) (5-8) 
3=1 3=1 

This is a simple relationship that can effectively be implemented as a real-time algo- 
rithm using recently developed methods in discrete optimization. 

The target discrimination problem is thus a statistical decision problem that can be 
described as a four-tuple TDP =< X, DM, F, H > in accordance with the canonical 
framework developed in Chapter 2. In the following subsections, we use this description 
to explain each part of the problem in more precise detail. 

5.2.1. The Observation Process X 

Two kinds of information are collected during the midcourse discrimination phase: 
state information about targets, the sensors, and the NPB platform; and target signal 
return information resulting from target interrogations by the NPB. The first is simi- 
lar to information collected during the boost phase, and this was discussed in Section 
2.2.1.1. The second consists of neutral particle counts received by the sensor network 
during target interrogation. These counts are not only determined by neutral particle 
physics, but also by the engagement geometry and the orientation of the vehicles in- 
volved: they include noise terms due to space background, other regeneration sources 
on earth, and detector imperfections. When a given target T is interrogated by an 
NPB platform D, the overall particle count of any sensor S is therefore a stochastic 
process: 

X(XT, XD, XE, XS) = NT(XT, XD, XS) + Ns(Xs) + NE{XE) , (5.9) 

the count due only to the target regeneration of neutral particles from the interrogation 
pulse, plus the count due only to sensor noise and the noise due only to space and earth 
background. 
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In Eq. (5.9), the arguments of the function X have the same meaning as in Sec- 
tion 2.2.1.1. 

5.2.1.1. The Target Regeneration Count NT- Referring to Fig. 5.5, consider a 
platform D located at XQ, whose neutral particle beam directs a pulse along unit vector 
ej)T towards a target T located at XT, causing T to regenerate neutral particles, some of 
which are observed by sensor S located at Xs- In this section, we derive the probability- 
distribution of the particle count NT detected by S, accounting for the physics of beam 
generation, propagation, and interaction with the target, and for various acquisition, 
pointing, and tracking uncertainties. 

Assuming a uniform beam of width ^n, let ID be the beam current and r its pulse 
length. In some cases, this "cookie cutter" beam profile is inadequate, and Gaussian 
f-spot models can be introduced, as in Corynen and Glaser (1992), but we ignore such 
situations. Defining apx =\\ XT - XQ ||, the distance from the NPB platform to the 
target, the current density at the target is 

jr = i^      amps/m2. (5.10) 

niipDdDTJ 

If the target projects an effective area AEFF f°r A the effective current received by 
the target is 

4:AEFFJD_   _ /'s-m 
IEFF — —; TT amPs • l5-11; 

7!" hpudDTJ 

In response to IEFF-, the target regenerates plßFF neutral particles along e^T with 
a regeneration beamwidth ipT-, as shown in Fig. 5.5. At a point d meters downrange 
along epT, and assuming a uniform current density inside I^T, the current density in 
vacuum is thus 

7(d) = ^EFFIDP     amps/m25 (5.12) 

^(^D{E)dDT)  (^T(E)d)' 

where we recognize that both beamwidths are a function of the particle energy E. 

Considering that neutral particle regeneration is a volumetric or bulk mass effect, 
elongated ellipsoidal targets regenerate more particles when stimulated along their prin- 
cipal axis, and their regeneration angle is smaller along their minor axis. For typical 
shapes, the target aspect area is modulated by the factor (1- | 0.5COS#T\D I); and the 
regeneration angle by the factor (0.9 cos kßpTS + 0.1), 
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DEWNPB 
Platform 

D 

Earth-centered 
coordinate system 

Figure 5.5. Neutral Particle Beam (NPB) target interrogation geometry. 
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where 

COSOTJ)   = exD'eT- 
COSÖDTS   = £DT'eTS- 

k   = —. 

er is a unit vector along the main axis of T. 
es is a unit vector along the main axis of S. 
tj)  is a unit vector along the main axis of D. 

We next consider path losses due to line-of-sight constraints and due to atmospheric 
attenuation. Consider Fig. 5.6, where ho is the "1/e height" of the atmosphere (h0 is 
typically 110 km), and where two satellites are located at Xs and XT, respectively. 

r-,: earth radius 

E : earth center 

h Q: atmosphere height 

Figure 5.6. Calculating path losses in an exponential atmosphere of height ho. 
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To simplify calculations, we assume that the attention factor at an altitude h above 
the earth surface is 

(5.13) OCATM = (l - e-hlh°) , 

and that the attenuation experienced by 6 beam traveling along an atmospheric path 
is determined by the lowest point on the path. For the path Xs — XT in Fig. 5.6, 

where 

aST = (l - e-
hminlhA , 

hmin = min{ \\ XT ||, || XS || j - rE . 

This expression is incorrect for paths like Xs — XT where the lowest point on the path 
lies somewhere between Xs and X'T, and may even be inside the earth. If X is the 
lowest point on such a path, 

X = X'n 

,    (xs-xTyxT 
T+   \\XS-XT\\*   {XS

~
X

T)- 
(5.14) 

The general expression for hmin is therefore 

max{0,min{\\ XT ||, || Xs ||} - rE},     (Xs - XT)-XT < 0 , 
hmin =  {   (5.15) 

max{X — rE, 0} ,    otherwise 

The total path loss factor is the product OLTOT = &DTaTS °f the path loss factors from 
the NPB platform to the target and from the target to the sensor. Including the cosine 
angular sensitivity es'esT, the effective sensing area ASENSI the particle-to-electron 
conversion factor e/q, and the total path attenuation factor OLTOT, the electron count 
due to an NPB pulse of r seconds at a sensor located at a distance of dxs =|| Xs—Xy || 
meters from the target is ( [x] is the nearest integer to X): 

16AEFTASENslpreaTOTJes' ^ST) 

q-K\i>D{E)dDTy^T{E)dTsy 
(1- | 0.5 cos 9TD |)(0.9 cos k6DTS + 0.1 

NT = < 
for (-7T/2Ä; < 6Ts < n/2k) /\(es-eST > 0) 

0 , for (TT/2A: < 9TS < -7r/2fc) V (es-esr) < 0 

(5.16) 
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We shall usually simplify this expression symbolically during further discussions and 
write 

NT = QRTAEFF , (5-17) 

where the meaning of all the symbols is obvious. 

The effective target area AEFF is derived from the interaction between the NPB and 
the target using geometric arguments, as follows. Refer to Fig. 5.7, where a target T is 
shown at a distance dpr fr°m tne platform D. The area Aj) of the beam at the target 
is modeled as a circle of radius rj) = CIDT^D/2, 

and tne effective particle collection 
area AEFF consists of points both in AT and in Aj)—i.e., AEFF = ATC)AD, where 
we have slightly abused the distinction between a "set" and an "area" (area being a 
measure on a set) in order to simplify our exposition. 

NPB 
platform 

D 

Figure 5.7.  Simplified model of NPB-Target interaction where the target (T) is modeled 
as a projected area A^ of radius rj-. 
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Two extreme cases are of interest in this analysis. The first is a trivial but also 
a worst case where no particles are collected by the target because Aj and Aj) are 
disjoint, and AEFF — -&T f] ^-D = 0- The other case is the best case, where one area is 
a subset of the other, in which case 

AEFF = mini AT, AD> = AEFF. (5.18) 

These two situations are important in practice when acquisition, tracking, and pointing 
(ATP) errors are considered. When such errors are small, a maximal count Nj may 
be achieved, but when they are large, N? may equal zero. Such errors are random 
variables, of course; thus AEFF *

S
 itself a random variable, and so is the particle count 

NT. 

To derive the distribution of iVj-, let e^ be the random angular beam direction error in 
polar coordinates. Then AEFF — 0 whenever ey, > (rr + rj))/d,DT and AEFF — -^-EFF 
whenever e^ < (| rj- — rp \)ldjyx- To compute the probabilities po = prob(A£FF = 0) 
and pi = prob(AEFF — AEFF), we assume that e^ is derived from rectangular errors 
e^x and e^y whose distribution is Gaussian, with zero means and common variance 

°%x = a\y ~ °"2- Since *-4> = (elx + 4y)1/2' the distribution of e^ is the Rayleigh 
distribution (Papoulis 1965), and 

and 

where 7^2 is the CDF of the Rayleigh distribution with variance 0.429 a2 and mean 
(<727T/2)1/2. 

Based on the behavior of AEFF 
as e4> is varied, we assume that the CDF of AEFF is 

increasing linearly from AEFF = 0+ to AE~FF, as shown in Fig. 5.8, and the mean of 
AEFF then equals 

ÄEFF = (l-P0+Pi)(^fL). (5.20) 
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lEFF 

1-Pi- 

> IAEFFI 

A0 

Figure 5.8. The cumulative distribution function of AßFF- 

Including the non-random factor Qpr of Eq. (5.17), and defining NT = QprAEFF, 
the CDF of NT is obtained via a simple change of variables: 

(0 

Po 

FNT(NT) = < Pi 

(1 - pi - po)Nt 

NT 
+ Po 

,  NT <0 

,  JVr = 0 

,  NT = NT 

,  0<NT<NT 

,  NT<NT 

(5.21) 

Using Eq. (5.19), the mean count NT is thus 

NT — QPTAEFF 

(l-po + Pi)QprA°EFF 

2 
(5.22) 
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5.2.1.2. The Sensor Noise Count Ns. The noise introduced in the counting 
process by the sensor is due essentially to detector noise, whose statistics are assumed 
to be Poisson with parameter \DET- If the noise pulse generation rate is \DET-, the 
probability that n detector noise pulses are counted during a time interval of size r is 

PDElin; *DET) = e~TXDET^DET)n _ (5 23) 

The mean count NDET is r^DET, and so is the variance. For mean values TXQET > 6, 
a Gaussian approximation is accurate and will be used. 

5.2.1.3. The Environmental Noise NE- Earth background noise results from a 
"porthole view" and is based on maximum albedo flux whose intensity is also Poisson 
distributed with parameter A#, and this noise falls off linearly in 8SE (see Fig. 5.5), as 
follows: 

2A0./7T 

XE = I —\2- '""■';    '   " -'"^ "'' , (5.24) ^(f-l^l)      ,    O<|0S£|<7T/2 

,   if not , 

where 

*•— -(w)- 
One additional noise term that usually yields a Poisson count at the sensor is a 

background effect due to man-made nuclear events, but these are not treated in this 
report. 

5.2.1.4. The Total Count NTOT- The total particle count at a sensor is the sum 

NTOT = NT + NS + NE , (5.25) 

whose components were derived above. 

Since both Ns and Ng are Poisson distributed, their sum NSE is also, and the 
random variable NTOT is then simply the sum of two independent random variables, 
whose distribution may be found by convolution, as in Fig. 5.9, where the densities 
fN (n) and fN   (n) are shown. 
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fN0»)* 

SE 

>■ n 

Figure 5.9. The distribution of NTOT 
is found by convolution. 

Recall (Papoulis 1965) that the pdf of the sum Z = X + Y of two independent 
continuous random variables X and Y is 

/oo 

fx(x)fy(z ~ x)d* 
-oo 

(5.26) 

Although neither /,, nor fM    are continuous in the conventional sense, their represen- 
T SB 

tation as generalized functions (Papoulis 1977) is sufficiently smooth to allow the direct 
application of Eq. (5.26). If we let Z = NTOT, X = NT, and Y = NSE, 

fx(x) = /^(n) = p06(n) + PlS(n - JV?) + (l^)(U(n) - U(n - JVf)), 

and 

fv(y) = fN(n) = J2 a(i)S(n - i) , 
SE 

i=0 

where: 

and 

a(t) = 
e-T\SE(T\SEy 

0,    x < 0 
U(x) = (5.27) 

1,    x >0 
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To simplify the notation in deriving the CDF of Z, let 

Ä! ={X = 0}, A2 = {X = N%}, B1 = {Y = 0}, B2 = {Y = N%}, 
2 

E = f\ÄiA~Bj, and 
» = 1 
J' = l 

Po =p(Ai), pi =p(A2), 9o =p(Bi), 9i =p(B2). 

Then 

Fz{z) =  J2 P(X + Y < z \AiABj )p{Ai A Bj) +p(X + Y<z \E)p{E) ,      (5.28) 
i=3=l 

and 

Fz(z) = PoqoU(z) + miU{z - N}) + Plq0U(z - JV£) + PmU(z - 2iV£) + P(E)I(z) , 

where 
2 

p(E)=   H   (l - piAiMBjj) , 
i=j=i 

and 
/Z TOO     /l      _ .. °° 

/     k     o ° U(x) - U(x - J\#)   ]T a(i)6(z ~x~ {)dxdz ■       (5-29) 
-oo J—oo       ■***        *■ *    .-_, t=l 

The integrand of I(z) may be written as 

fNT (l-p)   °° 
9Z^ = / MO      E aÜ)s(z ~x~ ^dx 

i=[z-] 

= {±w21 E aW'** = max^ w - *?} tfj   — 
i#4 

(5.30) 

In conclusion, the CDF of the total count NTOT is 

-^    (n) =Po9o*7(n) +Po?i*7(n - JVf) + PiqoU(n - N%)+piqiU(n - 2i\$)+ 

p(E) r  ^E a(i)d2 . (5.31) 
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5.2.2. The Decision Maker DM 

In the target classifiction problem, the decision maker DM =< d,L > classifies 
observations x € X in accordance with a decision function d from the observation 
space X to the parameter space 0, incurring a loss L[9i \ei J when x is classified as 

originating from a target of type 6i, whose actual type is 8j (see Eq. 5.6). 

5.2.2.1. The Decision Rule d. Recall that the threat is a collection W = {wi : 
i = 1,...,\ I \} oi \I \ clouds Wi, each consisting of raj targets of which r; are RV 
replicas, di are RV decoys, and n,- are actual RVs. Two cases are considered (we omit 
the subscript i): 

Case 1      n, d, and r are known. 

Case 2      n, d, and r are not all known. 

Case 1 

Assuming that RVs generate larger counts than replicas or decoys, the rule is to clas- 
sify the n largest counts as originating from an RV. More precisely, the observations are 
m-vectors (xi,..., xm) € Xm, each component count Xj resulting from an interrogation 
of target Tj in cloud w. The action space is the m-dimensional space Am = {0, l}m 

whose elements are m-tuples [ai,... ,a,j,... am], where a,j = 0 if the target is classi- 
fied as an RV and a,- = 1 if not. The parameter space 0 is also m-dimensional, and 
0 = {(0i, • • -,0m)}, with 6j = 0, 1, or 2 if the target is an RV, a replica, or a decoy, 
respectively. 

The decision rule for Case 1 is thus a vector function d : Xm —» Am, and d = 
[di,... ,dk, ■-.,dm], where each d^ : X —> A is a coordinate map taking an observation 
xk on Target Tk into a decision dk(xk) = ak € A = {0,1}. If we define dk(xk) = 1 
whenever xk is classified as originating from an RV, and dk(xk) = 0 when not, our 
decision rule is 

' 1,     if 3 integers {r = 1,..., n — m} 

dk{xk) = < 3 xkr < xk , kr distinct ,     kr ^ k (5.32) 

k 0 ,    otherwise 

In Section 5.2.4.4, we show that this rule is optimal. 

Case 2 

When n, d, and r are all unknown but m is known, the policy is to interrogate and 
classify targets one at a time using a conventional thresholding approach, as sketched 
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in Fig. 5.10. The decision function is now the scalar function d : X —» A, where X and 
A are as in Case 1, and the rule is to classify a count NTOT 

as originating from an RV 
if and only if NXOT > V- 

> n 
Threshold r\ 

Figure 5.10. The conditional probability densities of the total count fN      (n \g) for decoys 

(9 = 2), replicas (0 = 1), and RVs (0 = 0). 
'TOT 

5.2.2.2.The Loss Function. As we did in the boost phase, we assume that mis- 
classified or misidentified RVs leak through. We also assume that all RVs in the same 
cloud have the same value V. In contrast to the more general case where losses are 
random, even when decisions or actions are known, discrimination losses are fixed once 
actions have been taken. Again, we consider the two cases defined in Section 5.2.2.1. 

Case 1 

When n is known, the defense allocates a fixed budget to a cloud, and false alarms 
do not incur any losses per se. But, for every occurrence of a false alarm (a non-RV is 
classified as an RV), there must be a misclassification of a non-RV as an RV, since n is 
fixed. The total cloud loss incurred when taking action [a] £ Am when the true state 
of nature is [0] € 0 is thus 

L({a}\[9]) = VRV(^^)+nVINT (5.33) 

where ft([a],[0]) is the Hamming distance (Bertsekas and Tsitsiklis 1989) between [a] 
and [9], and VRV and VJNT are the costs of leaking an RV and intercepting a target, 
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respectively.   For any pair (x, y) of binary strings of equal length, h(x, y) equals the 
number of positions (coordinates) where x and y differ. 

Case 2 

We are only interested in classifying targets as RVs or non-RVs. If a0 and 80 represent 
the "non-RV" decision and state of nature, respectively, the losses for individual targets 

are: 

L(CLQ \6o ) =L(ao \8l )=L(üQ \e2 ) = x(a0 |,o ) = VINT , 

l(ä0 Ui ) = L\äQ \e2 ) = L\ä0 |^ ) = 0 > and 

L(äo\90)=VRV. (5-34) 

5.2.3. The Feasibility Set F 

The feasibility set is used to specify constraints. Although some deadline constraints 
exist on the allocation of interrogation times, these are considered in detail during 
the target scheduling operation which is discussed in the next major section, and no 
constraints are explicitly imposed on the target identification process. 

5.2.4. The Optimization Criterion H 

Classification performance is judged by the expected (E) classification cost or loss 
(L) with respect to the probability measures on observations (Vx)- Hence H = 
<L,VX,E>. 

5.2.4.1. The Loss Function L. The total cloud loss function £([a]|[ö]) for Case 1 
is given by Eq. (5.30). For Case 2, losses can only be combined as risks, by weighing 
them by their probability of occurrence, and this is done later in Section 5.2.4.4. 

5.2.4.2. The Probability Measure Vx- Different probability functions apply to 
each of the two cases. In Case 1, a probability measure is needed on the Hamming 
distances X([a], [0]) defined earlier. In the thresholding situation of Case 2, more con- 
ventional error probabilities apply. In both cases, the prior probabilities on types [8] 
are included by considering Vx as a collection of conditional probabilities Vx \[e], one 

for each value of [8]. 

Case 1 

All that is known about a cloud w is the quantities m, n, r, d, but these are assumed 
known with certainty. This is therefore a degenerate case of the Bayesian framework 
(see Eq. (5.6)) where the prior probability p([8]) = 1 for any combination of types 0; 
that satisfies the m, n, r, d requirement, and p([8]) = 0 otherwise. 
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In Section 5.2.4.3 below, we show that our decision rule d is optimal and that the 
only probabilities needed are the probabilities p(h([a], [6])) on the Hamming distances 
h([a], [$]), and these are derived as follows. 

Recall that NTOTRV = NRV + NSE, the total count received from an RV, and 
similarly for NREP and NQEC- The probability pRV that any RV is correctly identified 
is the probability that no decoy signal (NQEC) 

or no replica signal {NREP) exceeds the 
RV signal NRV, since the noise term NSE drops out because it is shared by all signal 
returns. Thus 

r id r "T 
pRV = \p(NRV > NDEc)\  • [p(NRV > NREp)\   . (5.35) 

The probability that v out of n RVs are correctly identified is 

PRv=0(PRv)V(l-Pnv)n-V' (5-36) 

and the mean quantity of identified RVs is 

HRV = npRV. (5.37) 

The probability that n — v out of n RVs are incorrectly identified in thus also pRV(v), 
and 

/ \        (Pnv(n-k)'      * = 0,l,...n 
p(h([aUß]) = 2k) = I _ . (5.38) 

10 ,    otherwise 

The derivation of P(NRV > NQEC) and P(NRV > NREP) is a bit lengthy. It is 
reported in Appendix E, where a convolution approach is taken using Eq. (5.32) (also 
see Fig. 5.8). 

Case 2 

When no prior information about the parameters 6j may be assumed, we use a 
uniform distribution on 6j. The conditional probability p(x \$.) for Eqs. (5.4) and (5.6) 
are simply the conditional count distributions fM   (n), fM     , and fM      derived earlier 

^RV "REP "DEC 
(see Eq. (5.21)). 

The probabilities of incurring the losses of Eq. (5.34) are as follows: 

P{ao \e0 )(rj) = p[NToTRV > v) = 1 - FNTOTRV(V), 

P(«0 löo )(V) = P\NTOTRV < *?) = FNTOTRV(V), 
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p(ao \go ) (»7) = p( [NTOTREP > fi) v [NTOTDEC >yU 

= 1-FN (V)FN (rj) 
yTOTREP "TOTDEC 

p(ä0 \go )(?y) = p[ (NTOTREP < v) v [NTOTDEC >V)J, 

= l-(l-F„ (17)) (J^ (17)). (5-39) 
V NTOTREP        /   \   "TOTDEC        / 

5.2.4.3.  The Objective Function 7?.. Because prior knowledge about threat ob- 
jects influences the overall classifiction risk, each case has a different objective function. 

Case 1 

Referring to the general formulation expressed in Eq. (5.6), and omitting the constant 
interception costs (VINT), the risk for one cloud is 

71= I   £j&(d(x)|,)p(*|,M*)<* X 

yÄvÄ(d(x),ö)p(Ö,x)dx 

Exploiting the discrete structure of h(a,8), this risk equals 

% = Y^L J2 2kp(h(a, 9) = 2k) . (5.40) 
Jfc=0 

Using Eqs. (5.36), (5.34), and (E-7), 

KnVRV(l-pRV), (5-41) 

and the total risk for \I\ clouds is 

M 

KTOT = J2ni- (5-42) 
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Case 2 

In the thresholding case, targets are classified one at a time, and the cloud risk is the 
sum of the member risks. The binary nature of d allows the same form as in Case 1. 
For a single cloud element and for a threshold 77, 

1     2 

1      2 

:"=0 j=0 

C1" FNJIM**) + (i" ^fo) \J*))0- - P« 

+ VRVF    Mp(60). (5.43) 
"ÄV 

For a threat consisting of 11\ clouds W{, each of which contains m,- elements Tij, the 
total classification risk is 

^ = EE^- (5-44) 
»■=1  3=1 

5.2.4.4. Optimizing Classification Risk TZ. Both cases must be approached 
differently because, while there exists a closed form solution for Case 1 (the rule of Eq. 
5.30), a recursive numerical method must be applied to Case 2. 

Case 1 

To show optimality of the decision rule for this case, we use the simple fact that 
signals (N) received from RV's are larger than those from decoys or replicas. Our rule 
d*(x) of classifying the strongest signals as originating from RV's implies that, 

(VJfc # 0) (p*(Jfc) = p(h(d*(x),$) = k)< p(h(d(x), 8) = k)= p(k)) 

for any other rule d. Hence 

771 771 

Tl{d*) = Y^ kp*(k) < J2 kP(k) = Kid) (5.45) 
jfc=o ifc=o 

Note the implied assumption that variations in Aßpp for different target types cannot 
reverse the signal dominance of RV's over other targets. But in extreme and rare cases, 
AEFF could be zero for an RV, and non-zero for a decoy or for a replica, for instance. 
We ignore such situations. 
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Case 2 

Because closed-form minimization solutions to Eq. (5.43) exist only for the simplest 
Gaussian cases, and because each cloud wi will usually have a different optimal thresh- 
old 77*, a numerical approach is required for this case. A simplified flow of the algorithm 
is shown in Fig. 5.11, and the meaning of the various block inputs and outputs should 
be clear from our earlier discussions in this section. But note that our data fusion 
approach is trival in this first verions of the algorithm, in that we select the output of 
the sensor that has the highest signal-to-noise ratio NT/(NS + NE) (see Eq. 5.25). 

5.3 The Target Scheduling Problem 

During the midcourse discrimination phase, the objective is to minimize the total 
risk 

TITOT = KC + Rr, (5-46) 

where TZC is the classification risk analyzed in Section 5.2, and KT is the rejection risk 
defined in Chapter 2, and analyzed in this section. 

As discussed in the introduction to this chapter, both these risks are sensitive func- 
tions of the interrogation dwell time vector r = [r,j : i = 1,..., m, j = 1,..., m], with 
1ZC decreasing as r^ is increased and TlT decreasing as T{j is decreased, as shown in 
Fig. 5.2. But, as for the boost phase, Tlr is also a function of the sequence TT in which 
targets are prosecuted, and of the rejection criterion r. In this section, we minimize 
the rejection risk Tlr by finding optimal values for 7r, r, and r, and we combine this 
minimum risk with the minimal classification risk derived in Section 5.2 to obtain the 
minimal total midcourse discrimination risk TZ^OT- 

5.3.1. Selecting the Permutation 7r 

Exactly the same methods are used to find the optimal target sequence it during the 
midcourse phase as were used during the boost phase, but they are applied in a slightly 
different manner. During midcourse discrimination, a two-level hierarchical approach is 
used in which the nodes or vertices corresponding to the sequence IT are target clouds, 
and these are located on the higher level of the hierarchy. During the construction 
of some tour 7r, each higher-level node is decomposed into a lower-level tour through 
the individual targets that constitute the cloud represented by that higher-level node. 
Retarget times and dwell times are treated similarly, with the total time to complete IT 

equal to the sum of all inter-centroid retarget times and dwell times at each centroid. 
While these retarget times are treated as they were during the boost phase, the dwell 
time for any cloud is the sum of the dwell times and retarget times of its constituent 
member targets, and these are derived from physical and geometrical arguments in a 
later section. Thus, if tj„ is the retarget time from cloud wu to cloud wv, if is the 
dwell time for the cloud wu, t%jk is the dwell time for the jih = target tuj in cloud wu, 

and t^-k is the retarget time t^-k from Tuj to T«*, 
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mu mu—1 

and the total tour time is 

** = £*? + £'?•• (5-48) 

Specific expressions for t%jk are derived in the next section, where target rejection is 
discussed. 

5.3.2. Target Rejection 

Whenever one or more targets cannot be identified or classified within their allocated 
time window, some must be ignored, or rejected. This process is almost identical to 
that employed during the boost phase, except for the fact that only target clouds are 
rejected and that the computation of dwell times is different. An individual target is 
rejected if, and only if, its parent cloud is rejected, and terms in the rejection ratio now 
refer to clouds instead of targets. 

For midcourse discrimination, the rejection ratio for a target cloud w consisting of 
m targets is 

tD + AtR V      J 

where 

a is the cloud deadline hardness, 
Vj is the value of target Ty, 

Tlc is the cloud classification risk (see Eqs. (5.42-5.44)), 
tD is the cloud dwell time (Eq. (5.47), Section 5.3.1), and 

AtR is the cloud retarget time rejection gain. 

5.3.2.1. Calculating Cloud Dwell Times. Cloud dwell times are sums of target 
dwell times and retarget times, as Eq. (5.45) shows. Target dwell times are determined 
in the outer optimization loop, as we discuss in the next section, and every target is 
allocated the same dwell time during any iteration in that loop. But retargeting times 
are a bit more complicated since they depend upon the spatial distribution of targets 
within a cloud. Whereas the rise times and settling times are essentially the same for all 
targets in a cloud and need only be multiplied by the number of targets in the cloud to 
obtain a total cloud rise and settling time, the travel time from target to target depends 
more directly on the cloud geometry and on the method used to sweep through the 
cloud. We examine two cases. 
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Case 1: Uniform distribution inside a sphere 

We assume that targets are distributed uniformly throughout a spherical cloud of 
radius ro, and we compute the probability density of the distance from cloud center to 
any member target in a projected plane as would be seen on a two-dimensional focal 
plane array on board the NPB platform. We need to assume, of course, that the clouds 
are sufficiently far away from the platform to assure that the image on the focal plane 
array is in fact the mathematical projection of (x,y,z)-points into (x, y)-points. 

Starting with a uniform density 

ft \      i Z—5" >    x2 + y2 +z2 <rl 

10        ,   otherwise 

the marginal density in the x-y plane is 

(5.50) 

fxy(x,y)= / 
J—a 

fxyz(x,y,z)dz 
3(r0

2 - x2 - y2) 

27rr0
3 x2 + y2 < r2 

otherwise 
(5.51) 

where a r\-x2 -y2. 

To get the density of R = (X2 + Y2)1'2, consider a differential area dxdy = rdrdO in 
polar coordinates. Then (Fig. 5.12) 

/•2JT 

ftir) = / 
Jo 

3(r2-ryf2rd9       \ 3r(ro ~ r2)1/2 

27rr3 
i   0 < r < ro 

,   otherwise 
(5.52) 

and /fl(r) has a maximum at r = ro/y/2. 

The expected value R of R is 37rr0/16 « 0.59 ro, and its variance is only 0.04T-
2

,. 

Considering that the retarget times of objects near the center are relatively small, a 
good approximation for our purposes is thus to assume that all targets are projected 
into a circle of radius 0.59r0. Including the trip to and from the cloud centroid, the total 
retarget distance for a cloud is thus (2 + (0.59)27r)ro, and the total angular distance 
travelled is 5.70ro/d/xr rad, where dj)x is the platform-to-cloud distance. 
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fN(D 

R = 0.59 r0 

Figure 5.12. Probability density function of the target-to-cloud centroid distance in 
the projection plane.   The expected value of R is 0.59r0, and fR(r) has a maximum at 

r* = r0/V2. 

Case 2: Uniform distribution on the surface of a sphere 

In spherical coordinates (r, 0, <f>), targets are distributed uniformly in 9 and </>, at a 
constant distance r from the cloud centroid. Since 9 and <j> are independent random 
variables, their joint density is /$0(> , 9) = 1/2TT

2
, the product of two uniform densities 

Ü4, and Ug on the intervals (0, T) and (0, 2TT), respectively. The marginal density of $ is 
thus simply U$/ir, and, using the same assumptions as for Case 1, we may project the 
spherical distribution onto any plane to obtain the pdf of the projected radial variable 
r, as we did for Case 1. We may thus choose the plane for which 0 = 0. Using the 
conventional transformation to rectangular coordinates (x,y,z), 

y =ro sin <f> sin 9 , 

x =ro sin <f> cos 9 , 

z =rQCOS<f> , 

r =(x2 + y2)1/2 = r0(sin 92 sin 92 + sin 92 cos 02)1/2 = r0 sin 9 . (5.53) 

Thus r = r0sin^> (regardless of 0), and the cumulative distribution of the radial 

distance r is 
T 

FR(r) = p(R <r)= p(r0 sin $ < r) = p(sin $ < —) 

= P ($<sin-(i-)A($>sin-Q)] 

= 2p(0 < $ < sin"1 (—) < TT/2) 
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=!(«<£))■ ^ ( sin„ x ( 

where sin"1 and sin J1 are the primary and secondary inverses of sin, repectively. Thus: 

fdr) = F'R(r) = y(rj _
2
r2)1/2 . (5.55) 

The expected value of i? is 2ro/7r, so, including the start from and return to the 
cloud centroid, the mean total angular displacement for the cloud is 

&TOT = —, rad . (5.56) 
dDT 

The results for these two cases can now be combined with platform slewing param- 
eters to obtained slew times between targets, as we did for the boost phase. These 
times are simply the sum of the displacement times derived in this section (angular 
displacement divided by the steady state angular slew rate of the platform), and the 
rise and settling times discussed in Section 2.2.1.3.1.1. 

5.3.3 Selecting the Dwell Time Vector tD 

Just as the leakage probability pi is the most effective scalar control variable during 
the boost phase, dwell time tD is the best choice for the midcourse ID phase because ID 
classification risk 7lc is very sensitive to tD, and the target rejection risk 1ZT is almost 
exclusively determined by the engagement time line. Optimizing tD could, with some 
abuse of language, be referred to as "global optimization," as we did in the boost phase 
section (Section 4.3), and many comments in that section apply here as well. 

As Fig. 5.13 shows, the outer loop of DDTS in the midcourse phase is rather straight- 
forward, given the extensive discussions in previous sections. Total dwell time r is 
optimized by minimizing the total risk TITOT-> the sum of rejection and classification 
risk, using the BRENT algorithm, a method for scalar optimization (Brent 1973; Press 
et al. 1988). 
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Figure 5.13.   The total dwell time r is optimized in the outer loop and equally divided 

among all M targets in the threat. 

The Brent algorithm is very robust to sharp derivatives, and its application to a 
variety of problems has always produced rapid convergence, usually in just a few steps. 
It has also demonstrated surprising forgiveness in addressing problems with multiple 
local minima, as large as the local "wells" are small compared to that of the global 
minimum. 
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6. Testing the DDTS Algorithm 

6.1 Introduction 

One major project goal was to deliver a target scheduling software package to the 
Rome Laboratory for incorporation in a simulation testbed and for /9-testing towards 
brass board implemention as a real-time algorithm. The preliminary tests reported in 
this chapter were conducted with two objectives in mind. First, verification and vali- 
dation of the internal structure of DDTS was essential to assure that desired paramet- 
ric relationships were faithfully implemented in the algorithm. Second, experimental 
evidence was needed to estimate the time and space requirements of the algorithm. 
Even though a mathematical analysis predicted an expected boost phase complexity of 
0(n3), where n is the number of targets processed, additional assurance was sought by 
exercising the algorithm with a threat driver designed to force the algorithm to reveal 
its worst behavior. Considering that such a driver was unavailable, the THREATSIM 
threat simulator was developed on this project to accomplish this driving function. 
This simulator is described in Section 6.2. 

In Section 6.3 we report the results of testing the DDTS algorithm for the boost 
phase. No midcourse issues were addressed during the testing phase. 

6.2 The THREATSIM Simulator 

The THREATSIM simulator is currently configured to simulate threats in the boost 
phase. It is a rather straightforward simulator whose objects (targets) are points with 
6 degrees of freedom, capturing both the position and velocity of targets in 3 dimensions. 
Additional target features include type, value, vulnerability, deadline, release time, ID 
probability, aspect angle, and deadline hardness. 

THREATSIM generates threats in accordance with a specification of two shape fac- 
tors, the static shape and the dynamic shape. The static shape of a threat defines 
the geometric distribution of targets at any given time. A linear shape, for instance, 
means that all targets lie on a straight line, a spherical shape on a sphere, and so on. 
The dynamic shape specifies how the relative position of targets changes with time. A 
divergent shape, for instance, means that targets are leaving their static shape as time 
evolves. 

THREATSIM has a two-level hierarchical structure where entire target clusters are 
treated as primitive objects at the higher level, and individual targets are the prim- 
itives at the lower level. Our approach is to assign a nominal motion to each target 
cluster, and to simulate the motion of each individual target in the cluster by adding 
a disturbance to that nominal motion. 
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Considering that the principal performance measure for a DEW platform is expected 
leakage risk, additional parameters must be supplied to DDTS since risk is the result of 
an interaction between targets, sensors, the environment or background, and the DEW 
platform. 

Our discussion is organized as shown in Fig. 6.1. 

Section 6.2.1 Scenario 
definition 

Section 6.2.2 
Static 

structure 
Dynamic 
structure 

Section 6.2.3 Static 
structure 

Dynamic 
structure 

jfc^^r' 

Section 6.2.4 Other target scheduling parameters 

Parameter 
specification 

Cluster 
centroid 

simulation 

Cluster 
element 

simulation 

Schedule 
modeling 

Figure 6.1. Organization of Sections 6.2.1-4. 

6.2.1. Scenario and Parameter Specification 

For target scheduling purposes, engagements are defined parametrically by specifying 
a threat, a background and environment, a network of sensors, and a DEW platform. 
In this section, we list the parameters assigned to each of these major elements; hypo- 
thetical values for simulation purposes are included in parentheses, together with their 
names or labels. 

Whereas the simulation of objects in their boost phase is approximated by second- 
order rectilinear dynamics, we use the conventional characterization of satellite con- 
stellations (Corynen and Glaser 1992) discussed below to simulate clusters of targets 
in the post-boost or midcourse phase. The THREATSIM simulator drives the DDTS 
algorithm by generating straight-line boost phase segments that converge to a spherical 
orbit after a controllable amount of time has elapsed. 
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As shown in Fig. 6.2, our reference coordinate system is earth-centered, with the 
x-axis containing points with 0 longitude (Greenwich) and 0 latitude. The y-axis 
has direction 90° longitude and 0° latitude, and the z-axis points to the north pole 
(0° longitude, 90° latitude). 

Reference plane p 
(x-z plane) 

(90° long, 0° lat.) 

(0° Ion; 

Figure 6.2. Defining the earth-center coordinate system E. 

After the boost phase transients have elapsed, targets enter the midcourse, where 
they are assumed to move in a plane, their orbital plane. Such a plane is specified 
with two rotations of the reference or primal plane, the XE~ZE plane in this discussion. 
The first rotation is a rotation of the primal plane about the z-axis through an angle 
0, called the longitudinal rotation angle, in the clockwise direction about the z-axis as 
seen from the point z = -oo (counterclockwise otherwise). The second is a rotation 
of the new plane about the X£-axis through an angle 7, called the inclination angle 
(in conventional coordinate systems, this would actually be the complement of the 
"inclination angle"), in the clockwise direction about the x^-axis as seen from the 
point x = -00. While the first rotation produces a new coordinate system Ei, the 
second produces the coordinate system E2 where satellites move in the a;£2-Z£2-plane 
(see Fig. 6.3). 

The motion of objects in their P2 plane is specified by an initial angular position in 
their orbital plane, an offset or phasing angle relative to other orbits, and an angular 
rotation rate WE2 about the origin (25). Both are specified by their orbital radius r. 
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Second 
rotation 
plane P2 

First 
rotation 
plane Pj 

Figure 6.3 Satellite orbital planes P2 are specified by two sequential rotations, the first 
about Z£ and the second about X£x. 

The angular rates u along their circle of motion can be derived from elementary 
physics: 

 jß— rad/sec , (6.1) u 

where (using the MKS system of units) 

1" = f£ + h, the orbit radius of the object (m), 
T£ = 6367.65 x 103 m, the polar-equatorial average of the earth radius, 

h is the orbit altitude above earth surface (m) (typically 400 x 103 m), 
M = 5.9763 x 1024 kgm, 
G = 6.67 x 10-11 Nm2(kg)-2 , and 

MG = 2.00 x 107 kg3/2. 

The rotational (orbital) period is 

nn 27T     . . 
T = — (sec) , 

w 
(6.2) 
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and if there are m vehicles in the same orbit, their (uniform) angular spacing (in the 
XE2-ZE2 plane) is simply 

Mk,k+i = — rad , (6.3) 

where k is the counting index of the satellites sharing the same orbit. 

To allow an offset or phasing between rings, we introduce a phasing angle <f>° for 
each ring, effectively a rotation of the ring about its yE2 axis. By specifying these 
angles, the first element of ring j is located at an angle <j>° from the xE2 axis (clockwise 
rotation about the yE2 axis as seen from y = +00). Since the rings are well-ordered in 
accordance with longitudinal rotation, the distribution of targets in each ring is fully 
specified. 

For a given ring of density rrij, therefore, the direction angle (in the XJ—ZJ plane) to 
the initial (t = 0) position of target kj in the ring is simply 

(fc^l)^ *=1,...fm.. 
J m; J 

Summarizing, the motion of an object k is described by a vector in the Ei system: 

*E2ß) = (xE2>k(t), yE2tk(t), ZE2tk{t))T » (6-4) 

where 
xE2>k{

t) =r cos aE2ik(t), 
zE2k{t) =r sin ocE2>k(t), 
VE2,k(t) =0, 

<*£2(i)   = k>£2* + <f>k + ^°) and 
u>£2   is the angular rotation rate given by Eq. (6.1). 

To express Xß2(t) in the primal earth-centered system E, 

XE(t) = Rot-1Rot:1XE2(t), (6.5) 

where 

RotZ1 = Rot?, and Rotz   = 

in which 9 is the longitudinal rotation angle, 

Rot'1 = Roß, and Rotx   = 

cos 9     sin 9    0 
— sin 9    cos 9    0 

0 0       1 

1        0 0 
0      cos 7      sin 7 
0    — sin 7    cos 7 

(6-6) 

(6.7) 
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in which 7 is the inclination angle, and Xß2(t) is a column vector. 

Conversely, to express a vector XE in the new coordinate system E2, 

XE2 = RotxRotyXE . (6.8) 

Now that we know how to specify the motion of individual targets, a constellation 
of targets is specified by five parameters: 

- An inclination angle (7). 

- A quantity of rings (rar). 

- A set of ring elevations {rj, j = 1, ..., UR] (maximum altitude above earth). 

- A set of ring sizes {nj, j = 1, ..., UR] (quantity of satellites in each ring). 

- A set of phase angles {(ff-, j = 1, ..., UR}. 

For each constellation, the inclination angle (7) is fixed and the quantity UR of 
rings determines the angular separation A0 in the xE2-yE2 plane (longitudinal rotation 
angle). Clearly, 

A0 = — rad . (6.9) 
riR 

Next, the ring elevations rj determine the motion of each object in the ring, and 
the ring sizes ny specify the angular spacing (AÖ,;J+i)j = 2ir/nj) between objects in 
ring j. Conventionally, any object in a given ring is identified by a position number k 
(a "counting index"). This number is determined by the first object in the ring and 
the quantity of objects preceding the given object in the X£2-ZE2 plane as shown in 
Eq. (6.4). 

Another important coordinate transformation problem is to transform vectors in the 
earth-centered system E to and from the rotating platform coordinate systems ER and 
ET (we shall simply use Ep in this discussion). To start, we assume that the negative 
z-axis of every target goes through earth center, and that its y-axis is aligned with its 
velocity vector. Given the platform's position in system E, its coordinate system is 
thus fully specified, as follows. 

In the E2 system defined by the orbital plane of a platform, the position of the kih 

platform is 

X£(t) = rcos(u>* + (j>k + 4>°) eE2X + rsin(u;i + <f>k + <f>°)eE2Z , (6.10) 

where r and u> were defined earlier. 
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The velocity is 

'P 

dt 

+ (cosO* + <f>°) cos ut - sm(<j>k + (f>°) sin u>t)e£2z  -(6.11) 

X£(t) = —|äü = wr[- (cos(fo + <£°) sin tot + sin(fo + <£°) cos u;t)e£2r 

Given the orientation of its z-axis and y-axis in the E2 system, the unit vectors 
specifying the platform's coordinate system are the unit basis vectors 

E2z{) ~ II *&(*) || ' 

P   ^        Xj(t) (6-12) 

II *£« II ' 
eE2y(t) ~ • ■ yp 

eL(*) = e£f(t)xeg2i(*). 

Expressed in system E, whose unit basis vectors are e£z, e£y, e^z, and omitting 
time t for convenience, 

e£2x = Rot^Rot^e^ , 

Similarly, 

and 

eIL = P2ie£;x + P22e£3, + P2Z*Ez 

eEiz = PMeEx + PZ2^Ey + P33*Ez ■ (6.13) 

Now let Xp be some vector in the platform system EP.  If XE is the same vector 
expressed in the coordinate system E, then 

XE = PTXP + Rorz
lRotZlXPE2 , (6.14) 

where P = \pij], the matrix of coefficients pij defined above and located in row i and 
column j, and Xf  is the position of the platform. Hence, 

Xp = P[XE - Rot^Rot^X^} , (6.15) 
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and P provides the rotation required to express any vector in E as a vector in the 
rotating platform coordinate system E£. 

6.2.1.1. The Threat. Threats are defined by specifying global characteristics and 
individual target characteristics. 

6.2.1.1.1. Global Threat Characteristics.   These are specified with the 
following parameters: 

1. Total quantity of targets (N=100). 

2. Quantity and size of target clusters (M; = 10) (Clouds in the midcourse). 

3. Start time for launch (t0 = 74 seconds). 

4. Threat shape (discussed below). 

5. Shape of threat dynamics (discussed below). 

6. Cluster centroid position and motion (X, X). 

7. Cluster initial position and motion (Xo — (—5000,0,0), X = (1,1,1) km/sec). 

6.2.1.1.2. Individual Target Characteristics. Every target is described by 
a multidimensional vector whose components are: 

1. Position vector in 3 dimensions (X). 

2. Velocity in 3 dimensions (X, expected cluster perturbation of 1 km/sec). 

3. Deadline and release time (<D,*R). 

4. Dwell time (tD, computed on line). 

5. Leakage loss/value (V = 1). 

6. Energy consumed in response to DEW illumination (E). 

7. Probability of identification (Pjj) = 1, except when used as independent variable). 

8. Type (6 is the same for all targets). 

9. Deadline hardness (ap = 1 for all targets). 

10. Vulnerability radius (ry or r^jM, 1 meter). 

11. Aspect angle (computed from (1) and (2)) (ax). 
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12. Hardness mean and variance (//# = 105J/cm2, <r# = 104 J/cm2). 

13. Initial position and velocity (Xo,-Xo). 

6.2.1.2. Background and Environment (B&E). During the boost phase, B&E 
noise and disturbances are included as statistical noise terms in the sensor and DEW 
platform ATP parameters. During midcourse, additional Poisson noise terms are added 
to the neutral particle detection signals at the sensors, and atmospheric attenuation 
factors are also included. 

6.2.1.3. The Sensor Network. The data fusion policy in this report consists of 
choosing the sensor whose signal is largest. Therefore, only one sensor is considered 
herein, and its parameters are: 

1. Sensor position (Xs) and orientation (ßs)- 

2. Sensor velocity (Xs) and rotation rate (us)- 

3. Discrimination matrix (its entries are probabilities p,y and costs c^ of classifying 
Target i as Target j). 

4. Sensor beamwidth and total field of view (FOV). 

5. Tracking bias and uncertainties. 

6. Initial position and velocity (Xso>Xso)- 

6.2.1.4. The DEW Platform. The DEW platform performs various operations 
that are critical to target scheduling. The platform consists of three major hardware 
components: the main platform (P), the forebody (FB), and the fast steering head 
(FS). Each of these components and functions are characterized by several parameters: 

1. DEW beamwidth (<f>D or 6DEw = 0.15firad). 

2. Wavelength (A = 3.5pm). 

3. DEW and platform maneuvering (thrust) power (PQ and PT). 

4. Bias and jitter (be = 10~7rad: e0 » N(0,10_7rad)). 

5. Energy consumed and energy limit (E and Emax)- 

6. Platform tracking point bias and jitter (ex, (?T)- 

7. DEW efficiency (rjDEW = 0.9). 

8. Maximum angular displacement (l/££. = 1 rad, U™x = 10-3 rad, U%ax = TT rad). 
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9. Displacement input saturation level (UF
AT = 10 3 rad, UFB

T — 10  x rad, UP
AT = 

1 rad). 

10. Maximum slew rate (c£fx = 10 rad/sec, c£fx = 1 rad/sec, c^ax = 0.1 rad/sec). 

11. Pointing variance (eFS = 10"7 rad, eFB = 10"3 rad, ep = 10_1 rad). 

12. Damping constant (SFS = 8FB = 8P = 0.5). 

13. Critical frequency {UJ
FS

 = 104 rad/sec, uFB = 103 rad/sec, u>p = 10 rad/sec). 

14. Position and velocity vector (X,X). 

15. Initial position and velocity vector (Xo = (103,104,0) km, Xo = (-10,10,0) 
km/sec). 

16. Optics diameter (D = 8 - 13m). 

17. Optics power (P = 1.5 x 107w/ster.). 

18. Propagation attenuation constant (kx = 1014m2). 

6.2.2. Simulating Cluster Centroid Motion 

The motion of clusters is simulated by randomly selecting their centroid position and 
velocity to achieve various shapes or "profiles". 

6.2.2.1.   Cluster Centroid Position. We have k target clusters C = {ci, ... c,-, 
^■v .■*< ^"V 1^~ 

...Cfc} whose position centröids X = {Xi,... ,X;,.. .Xjt} are randomly selected to 
obtain combinations of three basic shapes: linear, spherical, or random. Usually, the 
position "profile" thus obtained consists of a linear segment during boost phase followed 
by a circular segment reached asymptotically during midcourse. 

6.2.2.1.1.    Linear Profile. For this profile, the centroid position Xi of cluster 
Ci is generated by the recursive law 

Xi = Xi-i+aiVi,       . (6.16) 

where 

X\   is the specified position of the first cluster, and 
Si   ~ U[aa,a{,], the uniform distribution in [a0,aj], —oo < aa < aj < oo . 
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The vector V is the direction vector for C, whose components V^, Viy, and VJv have 

a uniform distribution in the intervals 0 < Vxa < Vxb, 0 < Vya < Vyb, 0 < Vza < Vzb- 
The mean direction vector is 

'Vxb-VXa     Vyb-Vya     Vzb-Vza" - (Vxb ~    xa        yh ~    y°        *6 ~ Vga\ 
~ \    2    '     2    '     2    y' V     V       2 

and simulations are typically designed so that V lies along a vector from the cluster 
launch point to the final burnout point. 

6.2.2.1.2. Circular Profile. Using the spherical coordinates notation of earlier 

sections, ^   ^ 
Xi = (fi, 8i, fi) ~ (£;, yi, z{) , 

where 

X{ — Fj sin <^i cos $i. 

y,- = F,- sin <f>i sin 0^. 

2i  = F,cos^,-. 

Consistent with our definition of constellations, the circular position profile is ob- 
tained as follows: First select an initial inclination-elevation-phasing triple (71, r\, 9X) 
for cluster C\. This equals the terminal (booster burnout) point of a preceeding linear 
phase. The remaining cluster positions are defined recursively as 

(% ri, 3?) = (7,-1, fi-u *?-i) + (A7i, AFt, A?,-) , (6.17) 

where the perturbation terms are uniformly distributed in the intervals [70, 7&], [ra, n] 
and [<f>a, 4>b], respectively. 

6.2.2.1.3. Random Profile.   Cluster centroids for this shape are normally 
distributed about some normally distributed position X\ of the first cluster C\: 

Xi = Xi_i + Wi u (6.18) 

Wi = (Wix, Wiy, Wiz), 

Wü, wiy, wiznN(m, *i). 

6.2.2.2. Cluster Centroid Velocity. Two types of velocity profile are considered 
to simulate the motion of target clusters, the convergent linear dynamic and the conver- 
gent circular dynamic. Target scheduling algorithms are not as sensitive to the detailed 
physical behavior of targets as tracking algorithms would be, and in constructing threat 
motions, THREATSIM is allowed to violate the laws of dynamics in order to obtain a 
synthetic threat that will stress the DDTS algorithm beyond any level obtainable with 
more "physical" simulators. 
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6.2.2.2.1. The Convergent Linear Dynamic. This dynamic does not con- 
tain any acceleration terms and is therefore an obvious simplification of what may 
happen during the boost phase, but it is satisfactory for scheduling purposes. If ex- 
tended far enough into the future, it forces the centroids to converge along specified 
fixed unit vectors t{. For the ith cluster, 

Xi(t) = 77,-c,-(l - e-*/T) + e-V'Xio ,   0 < t < tB , (6.19) 

where 

m  ~ Ubla, m]> Va < m- 

Xio  is the initial velocity of Ci (specified) 
T  is the convergence rate factor. 

6.2.2.2.2. The Convergent Circular Dynamic. To model the transition 
from the boost phase to the orbital phase, THREATSIM transitions (nonsmoothly) 
from the terminal state of a linear motion to a constant radius circular orbit. Let the 
duration of the boost phase be tB. Then the position of d at time tB is 

Xi(tB) = r)itBa + r(Xi0 - Viei)(l - e~tB/r) , 

= (xi(tB), yi(tB), Zi(tB)) . (6.20) 

In spherical coordinates, 

xi(tB), = (fi(t5), 6i(tB), <t>i{tB)), 

where 

ri(tB)2 = xKtB) + yKtB) + zKtB), 

^) = *»-,®)> 
?j(<B) = cos-l(|M). 

The transition into circular orbit is done by clamping f;(i) and the angular rates 

6i(t) and <f>i(t) at their terminal values (achieved at t = tB) for all t > tB. 

The angular rates are computed using the relationships 

d_ 
dtl 

and 
d\      -i /«(*)\1 _     / v(t) \/(v(t)u'-u(t)v'(t)\ 

'     \v(t)J\~    \(vHt)-uHtW/2)\ vHt) )■ K-    } 

\x(t))\ ~ Vx2(<) + y\t)) V x\t) ) ' 

cos 
dti      \v(t)J\     \(v2(t) - u2(t)y/2 J \      v2(t) 
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6.2.2.2.3. The Divergent Linear Dynamic. In an earlier section (see 
Eq. (6.16)) we described the linear initial position profile for cluster centroids. This 
profile has a mean direction vector v. The divergent dynamic attempts to drive clusters 
away from v by forcing this motion towards a plane orthogonal to that vector, like 
Eq. (6.19), forces centroids towards the unit vectors e;. This produces irregular threat 
profiles that tend to stress target scheduling algorithms since there is little structure 
to exploit in such expanding dynamical threats. 

Starting with the reference vector V = V, consider any other vector V such that 
V ^ kV for any real number k. Then V x V is orthogonal to V, and (V' x V) x V is 
orthogonal to both V x V and V. Any vector in any plane orthogonal to V is thus a 
linear combination 

W = £ei + £e2, (6.22) 

where 

V'xV 
ei = 

e2 = 

|| V x V || ' 

(V x V) x V 
|| (V x V) x V 

and £i and £2 are two real numbers. 

To generate divergent targets, we select any such vector V, and we sample £1 and 
£2 from the uniform distributions U[£ia,£ib] and U[&a, &&]■ 

6.2.3.   Simulating Target Motion 

Individual target positions and velocities are simulated as Gaussian perturbations on 
the centroid motion of their parent cluster. Each cluster C{ has Mi elements or targets, 

Ci = {Tij:j = l,...,Mi}, 

whose positions and velocities are Xij and Xij, respectively. 

6.2.3.1. Target Positions 

The positions of targets in a cluster d are modeled as Gaussian deviations whose 
means are uniformly distributed. For target Tij, 

Xij = Xi + AXij, (6.23) 

where AXij = (AXijx, AXijy, AXijz), and AXiju « N(fHju, <Ty«) , u = x,y,z. 
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6.2.3.2. Target Velocities. For velocities, a similar approach is used: 

Xij^Xi + AXij, (6.24) 

where AXij = (AXijx, AXijy, AXijz), and AXiju = iV(/i,-JU, &iju). 

6.2.4   Modeling Deadline and Release Times 

We assume that all targets that belong to the same cluster have the same deadline 
and release time. 

6.2.4.1 Deadline Simulation. Considering the enormous permutations of dead- 
lines, that could be generated, some deadline structure is added by assuming that, in 
the mean, targets farther along their trajectory have less time-to-go than earlier targets. 
If d,- is the deadline of cluster C;, i — 1, ...,&, we employ the following simple additive 
scheme: 

di = di+1 + Ad,-, i = k - 1,..., 1, (6.25) 

with Ad,- ft N(nd, crd). 

6.2.4.2 Release Time Simulation. Release times always precede deadlines (oth- 
erwise the cluster is rejected), and we assume that the opportunity window size is 
uniformly distributed. The following approach produces the desired result, with r; the 
release time of cluster C{. 

n = di -Wi, i = l,...,k , (6.26) 

where Wi ft U[wa, twj]. 

6.3 Testing DDTS 

Most of the accepted approaches to target scheduling are based on some version of 
the nearest neighbor (NN) algorithm,* so we used the NN algorithm as a benchmark 
against which the DDTS algorithm was compared. But we had to considerably enhance 
NN to include deadlines and release times, otherwise the comparison would be a bit 
unfair since NN could be made to miss almost all of its targets by selecting a sufficiently 
tight deadline structure. 

Many threats were generated with THREATSIM to test the performance of the 
DDTS algorithm. In most cases, particularly for dense dynamic threats with severe 
deadlines, leakage risk for DDTS was considerably lower than for other algorithms. 
Using a mild threat consisting of 100 targets, we conducted 8 tests: 

* Papadimitriou and Steiglitz (1982); Lawler et al. (1985). 
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1. Expected leakage risk versus defense reaction time. 

2. Expected leakage risk versus engagement time. 

3. Quantity of targets leaked versus initial beam position. 

4. Expected leakage risk versus cluster centroid speed variance. 

5. CPU running time versus threat size. 

6. Risk versus probability of correct target identification. 

7. Risk versus fast steering damping constant. 

8. Risk versus fast steering motion limit. 

6.3.1   Expected Leakage Risk versus Defense Reaction Time 

Defense reaction time is defined as the time elapsed between first detection of the 
threat and the data handover from the battle manager to the DEW platform. Even for 
this relatively easy threat (Fig. 6.4), DDTS consistently dominates the enhanced NN 
algorithm, especially for small defense reaction times. 

The principal reason for this dominance is that the NN method does not understand 
deadlines and release times, and it is unable to reschedule targets when such constraints 
are violated. 

Expected 
leakage 

risk 
(x 100%) 

(100) 

(Numbers in parentheses 
are targets leaked) 

t^ 
80 100 120 

Defense reaction time (sec) 

Figure 6.4. Even for a mild threat, DDTS reduces risk considerably. 
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As the reaction time approaches 120 seconds, the threat floats by the DEW platform 
unhindered, and all targets leak through. 

6.3.2   Expected Leakage Risk versus Engagement Time 

Engagement time is the time elapsed since data handover from the battle manager. 
Clearly, DDTS reduces the risk more rapidly than NN as the engagement evolves, 
gaining 10 seconds of threat processing time as 60 seconds have elapsed (Fig. 6.5). This 
gain is due to improved allocations of dwell times, shortened retarget times overall, and 
a better target rejection policy. Other target scheduling algorithms, whether based on 
NN principles or not, reject targets only because they are late and do not rearrange 
schedules to account for the relative importance of targets. 

1.0 

Expected 
leakage   0.6 - - 

risk 
(xl00%) 0A~^ 

0.2 + 

0 
40 50 60 
Engagement time (sec) 

Figure 6.5. DDTS gets better answers faster. 

6.3.3   Quantity of Targets Leaked versus Initial Beam Position 

Referring to Fig. 6.6, observe that the NN algorithm is very sensitive to the initial 
aim direction of the DEW, essentially because it starts with the target nearest to 
that initial aimpoint, rather than slewing to the target nearest to its deadline. No 
targets leaked through with DDTS, whereas up to 16 leaked through with NN. This 
is understandable, since NN will typically sweep from the middle of the threat to one 
extremity, then return to the other extremity, thereby unnecessarily revisiting many 
points in space. Observe that the total dwell and retarget times were identical for both 
algorithms and showed no dependence upon the initial position of the beam. 
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Initial beam 
position 
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Middle 
Rear 

Leakers 

DDTS       NN 

Dwell time 
(sec) 

0 
0 
0 

6 
16 
11 

DDTS 

18.9 
18.9 
18.9 

NN 

18.7 
18.7 
18.7 

Retarget time 
(sec) 

DDTS       NN 

45.6 
45.6 
45.6 

46.0 
46.0 
46.0 

Figure 6.6. The algorithm is very insensitive to initial beam position. 

6.3.4   Expected Leakage Risk versus Cluster Centroid Speed Variance 

Each cluster was given a different centroid velocity in accordance with the laws of 
Eqs. (6.19) and (6.20). As the velocity or speed variance is increased, the threat is more 
difficult to handle since it is spreading through space, and predicting its future state be- 
comes critical. Nearest neighbor approaches are very myopic in this regard, scheduling 
targets without due consideration of the future position at the time of their process- 
ing. The advantages of predicting future target positions are clear from Fig. 6.7, where 
the targets leaked by DDTS remain at zero as speed variance is increased, whereas 
those leaked by NN increase rapidly beyond 10 km/sec. Note the interesting leakage 
characteristics of DDTS below 5.0 km/sec due to the time-varying threat geometry. 
As the cluster speed variations are increased, the threat is first harder to handle, then 
easier.  We were unable to explain exactly why this initial increase in risk for DDTS 

1.0 i 

0.8-- 
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risk     °-6 

(x 
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0.2 
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(10) (8)   NN    (6) 

-* * 
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(0) DDTS  (0) 
-O 0- 

(0) 
-o- 

(0) 
—0 

0.5 
H- 
2.5 

+ 
5.0 7.5 10.0 12.5 
Cluster centroid speed variance (km/sec) 

Figure 6.7. DDTS is much less sensitive to velocity effects. 
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disagrees—at least qualitatively—with the corresponding decrease for NN. We suspect 
that this minor deviation occurred because DDTS found a local minimum only at 
2.5 km/sec. 

6.3.5   CPU Running Time versus Threat Size 

Both algorithms were run on a Silicon Graphis IRIS machine. Observe that, for 
anything but trivial threats, targets will be rescheduled several times, so that there is 
no point scheduling targets too far into the future. To avoid redundant work, we never 
schedule more than k targets at a time, where k is called the "look-ahead" number. The 
worst-case complexity of DDTS is 0(n3), where n is the quantity of targets scheduled, 
but several experiments with k indicate that the target completion time actually varies 
as k2-5, a slight improvement over the worst case. 

Again, for most threats, DDTS was faster than NN, so a threat was chosen which 
challenges all the subroutines of DDTS, the 2-opt subroutine especially, and the graph 
shown in Fig. 6.8 reports the resulting completion time. 

CPU 
time 

(x 4 sec) 

200 400 600 800 1000 

Quantity of targets (n) 

Figure 6.8.  In spite of considerable physics and optimization work, the DDTS algorithm 
is efficient in time and space. 

The graph was obtained for k — 100, a rather large number considering the fluidity 
of the threat. Note that the implementation was on a sequential machine (IRIS), but is 
intended for parallel implementation on actual platforms. Also, programming was not 
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optimized; however, a speed-up of a factor of about 2 to 4 can be obtained by passing the 
current version of DDTS through a code optimizer. The Brent optimization subroutine 
performed admirably, requiring an average of only 4 iterations to reach optimality. The 
space requirements for DDTS are minimal because the dynamic memory allocation 
features of the C language are exploited and only a few target sequences are kept in 
storage at any given time. 

6.3.6   Risk versus Probability of Correct Target Identification 

The costs associated with target misidentification are severe. Target vulnerability or 
hardness is misjudged, resulting in erroneous dwell times and probable reductions in 
p . Aimpoint location errors are usually made as well, and these further reduce pK. For 
the tests reported here, we made the conservative assumption that any misidentified 
targets leak through; Figure 6.9 shows that pID has a significant effect on platform 
performance, so that reliable target identification algorithms must be used to assure 
acceptable platform performance. 

1.0 -" 

0.8 -" 

Expected 
leakage 06 — 

risk 
(x 100%) 

0.4 

0.2 -- 

0.2 0.4 0.6        0.8 1.0 p 
ID 

Figure 6.9. Platform performance is very sensitive to correct target identification. 
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6.3.7   Risk versus Fast Steering Damping Constant 

In DDTS, platform hardware dynamics are modeled as second-order linear systems. 
When control or steering components are underdamped, their settling time is usually 
high, and this can severely increase retarget times, resulting in increased leakage risk. 

Fortunately, as shown in Fig. 6.10, no severe harm is done, at least as far as the fast 
steering system is concerned, until damping constants fall below 0.04. 

1.0- 

0.8 

Expected 
leakage 

risk     °-6 

(x 100%) 

■^  8 FS 
0.02        0.04     0.06        0.08      1.00 

Fast steering damping constant 

Figure 6.10. System performance is not sensitive to fast steering damping. 
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6.3.8   Risk versus Fast Steering Motion Limit 

Motion limits of beam control and steering components affect performance only when 
the angular distance between targets is large, which typically occurs only when threats 
are rather sparse. For the threats used in these experiments, the fast steering motion 
limits had no significant impact on performance, as the rather comforting but uninter- 
esting graph of Fig. 6.11 indicates. The DDTS algorithm obviously sheduled targets in 
such a way that few if any retarget angles exceeded a few milliradians. The inclusion of 
hardware dynamics and constraints in the DDTS algorithm was essential to minimize 

retarget times. 
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0.8-- 
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Figure 6.11. Motion limits had no effect on performance for the threat considered. 
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7. Conclusions and Future Work 

During this three-year program, we have developed, tested, and delivered algorithms 
for managing HEL and NPB platforms operating in earth orbit during the boost and 
midcourse phases, with specific emphasis on the optimal allocation of weapon resources. 
The resource allocation problem was expressed as a scheduling problem where the pros- 
ecution of a potentially large collection of targets must be planned so as to minimize 
the total cost of target leakage, the Expected Leakage Risk. This planning activity de- 
termines in what order targets must be processed, how much processing time should be 
allocated to each target, and which targets should be ignored when there is insufficient 
time to process all targets by their deadlines. 

From our detailed analyses and experiments, we conclude that the target scheduling 
problem indeed turned out to be much more complicated than was expected at the 
outset. Previous scheduling approaches, for instance, have ignored or neglected several 
operational conditions and constraints that strongly influence the performance of DEW 
platforms in both the boost phase kill and in the midcourse discrimination phase. The 
elimination of such shortcomings forced us to conclude that previous studies had also 
been too abstract and could have been more "physics-based". But the inclusion of 
better physics models also painfully increased the computational complexity of conven- 
tional scheduling procedures, so that some technology improvements were needed to 
obtain an algorithm whose time and space behavior would be acceptable for this real- 
time application. Based on a balanced mixture of formal and heuristic methods, the 
Deadline Driven Target Scheduling (DDTS) algorithm satisfies the required operational 
constraints and provides excellent performance and computational efficiency. 

Fearing that too much modeling detail had been included in DDTS (over parametriza- 
tion), we ran exhaustive sensitivity tests using THREATSIM, a threat driver specifically 
designed to exercise DDTS. We confirmed that earlier algorithms had ignored physi- 
cal phenomena whose inclusion in DDTS not only improved platform performance but 
also influenced the internal structure of the optimization subroutines. But we could 
not confirm that our chosen level of modeling detail is optimal in any sense. We are 
now in fact certain that it is not because we have discovered during this writing that 
platform functions contiguous to target scheduling may influence the schedules. Recent 
unpublished research in DEW aimpoint selection (Probst 1992), for instance, indicates 
that satisfactory aimpoint selection is not possible for certain threat configurations. 
Targets should obviously not be scheduled for processing during configurations where 
no suitable aimpoint can be found. Consequently, one important issue to be addressed 
during further research is to integrate target scheduling algorithms with other platform 
functions such as Aimpoint Selection and Aimpoint Maintenance. 
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Other than the rather obvious fact that deadlines constitute the most severe con- 
straint when threats are at least moderately dense, no general conclusions about threat 
complexity were sought during this research. The DDTS algorithm simply does the 
best that is reasonably achievable with all the available information, and within the 
stated operational constraints. 

142 



Acknowledgment s 

This research was sponsored by the Strategic Defense Initiative Organization (SDIO) 
of the Department of Defense (DoD); it was directed by Mr. William A. Fontana, 
Project Engineer in the OCDE Section of the Rome Laboratory (RL) at Griffiss Air 
Force Base. This sponsorship is sincerely appreciated. 

The author would like to thank Mr. Kevin Probst for initiating and supporting 
this program during his tenure at SDIO, and Mr. Fontana for his continued guid- 
ance throughout this three-year research period. His assistance in providing important 
technical connections with other technology development programs was helpful in our 
attaining a sufficiently broad point of view for the target scheduling problem. 

Although too numerous to mention individually, the author would like to thank 
both contractor and government personnel working on various fire control, ATP, and 
simulation testbed development programs for their comments and general recommen- 
dations on this program. I would like, however, to thank a few specific individuals with 
whom technical interactions were especially fruitful. To Mr. Gary Gurski of the Gen- 
eral Research Corporation (GRC), many thanks for sharing with me the extensive fire 
control work done at GRC: that work provided a flying start for my research. The bat- 
tle management recommendations provided by Dr. Sheldon Cantor of the Aerospace 
Corporation are also appreciated. Sincere thanks to Dr. Thomas Wehner of the Los 
Alamos National Laboratory for providing the physical insight needed to develop the 
conceptual NPB models used in this report. 

I am grateful to Dr. R. Glaser (LLNL) for the careful review of the mathematical and 
computational concepts on which the DDTS algorithm is based, and for his thorough 
derivation of some of the functional relationships. I am particularly endebted to him 
for his flawless C-code version of DDTS, and to Mr. Richard Gassner (RL) for his 
/3-testing of the algorithm. 

143 



Appendices 

145 



Appendix A. 

Derivation of Derivatives 

We derive the angular derivatives BE{t0) and j>E(t0) used in Eq. (2.28) of Chapter 2. 

Referring to Fig. A.l, and omitting E-subscripts, 

Define w = x/y. 

I r |= y/(xy + (y)2 + (z)2 , 

6 = tan   (y/x), 

(j) = cos -1 

Vx2 + y2 + z* 

XE = (XE' % ZE} 

Figure A.l. Coordinate transformation diagram. 
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A.l   Computing | r 

d\r\      2(xx + yy + zz) 

dt y/x2 + y2 +z2 
(Al) 

A.2   Computing | 0 

0 = 
d(tan    w) 

~     dt 

dv 

1 - w2 J dt ' 

xy — yx xy — yx 

X2(l+W2)        X2(1 + (1)W2) 
X 

Hence: 

<t> 
xy — yx 
x2 + y2 (A2) 

A.3   Computing | <f> 

where 

<f> = d(cos    v) 
It 

dv 

VT^J dt ' 

v — 
y/x2 + y2 + z2 ' 

dv 
~dt 

y/x2 + y2 + z2 ) z - z 
xx + yy + zz 

. yjx2 + y2 + Z2 . 

(x2 + y2 + 22) 

z — z 
xx + yy + zz 

x2 + y2 + z2 _ 

(z2 + y2 + z2)1/2    ' 

 i        z{xx + yy + zi) 
(a;2 + y2 + ^2)1/2 ~ (a.2 + y2 + z2)3/2 
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But 

Combining, 

<f> = 

1 _(x2+y2+z2)l/2 

v/n^2 (x2 + y2)l/2 

(S2 + y2 + z2).(x2 + y2)l/2       (x2 + y2)l/2 ' 

V^Ty1 
z(xx + yy + zz) 

— z (A3) 
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Appendix B. 

Derivat ion of the Normal Approximation 

for P(Z > z) 

Recall from the text in Section 3.3.1.2 (see Eq. (3.25)): 

*'>->-«>(-6)fWÄ)5w(£)"v   (ßl) 

Changing variables, Let to = v2/2a^, then dw = 2vdv/2a2 = v/2a2dv. Thus, 

[    2(r2j^(n!)n2(72;  yz2/2„o 

But 

/     e~wwndw = n! /     i-u;(n+1)-1e-w 

Js Js    n\ 
n      _s  ; 

dw = n\J2 —jr ■ 
1=0 

Substituting, and letting a = JU
2
/2<7Q , 

°° an   n   sl 

p(Z >z) = exp(-(a + 5)) J2 -^ Y^ J ' 
n=0     '   /=0 

= (£^F)(E^)> 
n=0 1=0 

= prob(Xs < Xa) = prob (JC, - Xv < 0), (5.2) 

where Xs and Xa are independent Poisson variables with parameter s and a, respec- 
tively. 

If we approximate each Poisson variable by a normal variable with a corrected mean 
and same variance, then 

prob(Xs - Xv < 0) = prob (Ns -Nv<0) = prob(N < 0), 
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where 
N ~N(S-V-1/2,VsTv). (-B.3) 

Hence, 

*z>,)-*(l£dp2). 
V yf S + V / 

Resubstituting for s = z2 /2a2, v = (j,2 /2a2 and a0 = i2cr, 
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Appendix C. 

Deriving the Dwell Time tD* from the 
Kill Probability P/ 

In Section 3.3.1.4 (see Eq. (3.31)) a derivation of tD* from p*K was presented, but 
a few mathematical details were intentionally deferred. These details are presented in 
this appendix. Even though all the required symbols and definitions were introduced 
in Section 2.3.3.1, a slightly different set of terms is used here to simplify exposition 
and to provide a self-contained discussion. 

Objective: Obtain expression for dwell time in terms of kill probability. 

Notation 

p kill probability 

tj) dwell time 

// mean hardness of target 

a standard deviation of target hardness 

L pi — 1.5a 

U /X + 1.5(7 

p probability (miss target)   (beam circle D target circle = <f>) 

p probability of maximum target coverage by beam 

(beam circle C target circle or target circle C beam circle) 

TDEW    radius of beam circle = 4R\/y/irD (Ä, A, D defined below) 

TAIM     radius of target circle 

7"! max {rDEW■.TAIM) 

T-I min (rDEW, rAIM) 

R distance from DEW to target 

A° -KT\ maximum possible area of target coverage by beam 

a angle of incidence of beam on target (a = 0 is optimal hit) 
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P DEW power 

A wavelength 

D optics telescope size 

KT        incidence angle damping constant 

n ITPD2 cos a 
V 4A^exp[A:7#TCOsa] 

6 Qtd/a° 

q0 1 — p0 , probability target is hit (at least partially) by beam 

Define two random variables: 

A = area of target coverage by beam (area of beam circle D target 
circle) 

H = hardness of target 

Kill occurs if, and only if, 9 A > H. 

Therefore, 

pK = p(6A>H), 

= Jp(9A > H) \H=h)fH(h)dh (fH is the pdf of H) , 

=  / P(9A > h)fu(h)dh ,    since A and H are independent , 

= jp(A>^)fH(h)dh. (C.l) 

Since 6 = Qt^/A0, evaluation of the above integral yields a relation between pK and 
td- Clearly pK increases with 6 (and therefore with tj). Our goal is to determine, for 
fixed pK, the corresponding 9 (and therefore <</). 

For computational efficiency, we use approximations to the distributions of H and A. 

Approximation for H: Assume H is uniformly distributed over a 3 standard deviation 
range, [L, U] = \JJL - 1.5s,// + 1.5s]. Therefore, 

0       otherwise 
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Approximation for A: 

■ 

( 0 with probability pQ 

A — { A° with probability^ 

uniformly distributed on the range(0, A°) 

That is, the CDF of A is (Fig. C.l) 

r 0 if S < 0 

Po + £  (flo-ft)    */°*  S   <A° 

{liis>A° 

P{A >s)=< 

Figure C.l. Plot of the CDF of A (go = 1 - P0)- 

Therefore Eq. (C.l) simplifies to Eq. (C.2): 

p. = h[p(A>-i)dh- 
where (Fig. C.2) 

h 

( 1 if h < 0 

h 
P(A^l>y=\%--h(%-K)   ifO<h<A" 10    A°6" 

0 if h > A°6 
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q°-^e(q°"Pl) 

Figure C.2. CDF of A. 

The case h < 0 does not arise because L > 0 by assumption. 

Expression (C.2) determines pK as a function of 9 (or tj). For 9 < L/A°, pK is 
identically 0 since then h/9 > A0. We may dismiss this situation since by assumption 
PK>0. 

For 9 > L/A°, pK increases monotonically with 9, approaching qQ as q —► co (infinite 
dwell time). We fix pK in (0,<?0) and solve for 9 in (L/A°, oo). 

Evaluation of Eq. (C.2) hinges on the locations of L and U. 

Case 1: L < A°9 < U. 

Here Eq. (C.2) reduces to 

1    fAe h 
'* = Ia"A     [«o-^(*o-*)]<** (C.3) 

By monotonicity of pK, the condition L < A09 < U is equivalent to 0 < p>   < p° 
where p^ is the value of pK for 9 = u/A°: 

P*° = ^ /'   19„ - £(«„ - UV* = iMU -L)- ^(^ - L>) %-Pu 

= ^\%(Z°)-\^m(3a) 
3<7 2*7 

2U 

since U — L — 3a, U + L = 2/x: 

V 
= %-{%-P1)JT- U 
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To solve Eq. (C.3) for 0, we let ß = A°9 and solve for ß in (L, U). 

Therefore, pK— 
A 6<J w -L) - h^{ß2-L2) (C.4) 

which yields the quadratic, 

(<Zo + Pi)ß2 ~ 2(z0L + 3apK)ß + (go -Pi)L2 = 0 (C.5) 

There are two roots to Eq. (C.5): 

ß = 
qoL + 3apK ± J(q0 L + 3apK)2 - (g0 + P1)(g0 - PX)L

2 

% + Pi 

We now show that the "+" root is the desired solution in (L,U) to Eq. (C.4). View 
the right-hand side of Eq. (C.4) as a function of /?, denoted r(ß). Then 

±r(B) = J_   \h±HL _ ^A £2-1 
dß 

r{ß) 
Z<T ß2 

(C-6) 

and 

^r(ß) = ^(%-Pl)^ ß3 (C.7) 

We are interested only in ß > 0.  Here r(ß) is concave up (from Eq. (C.7)) and is 
decreasing for ß < aL and increasing for ß > aL (from Eq. (C.6)), where 

as /&-a<i. 
\K+Pi 

Of the two solutions rx and r2 to r(ß) = p/f(/3 > 0) (Fig. C.3), n is not in (L,U) 
because n < aL < L. Since a solution to r(ß) = pK in (£, U) exists, it must be r2. 
Furthermore, since n and r2 are the two roots to Eq. (C-5), r2 must be the larger 

one—i.e., the "+" root (Fig. C.3). 
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1 ~" '2 

Figure C.3. Plot of pK(ß > 0). 

Recall that ß = A°q. The Case 1 solution is therefore 

6 1   f ?oL + 3^ + V^ + 3<7^)2 " (?o + ^)(«o " Pi)L2 

«o + *\ } 
Case 2: U < A°6, or equivalently g0 > pK > p° = qQ - (qQ - p^fi/U. Hence Eq. (C.2) 
reduces to 

To solve Eq. (C.8) for 6, let ß = A°6 and solve for ß in (17, oo) 

%-PI,TT2 

(C.8) 

PK = 
1_ 

3(7 

3<r 

(%(U ~ L) - ^(Uz - L2) 

(3*q0 - SL_a(2M)(3cr)" 

= %- 
/*(9„-l\) 

/? 

Therefore /? = ^(g0 — R)/<70 — i^-), an^ *^e C^6 2 solution is 

e= K%-P1) 
A°(q0-PKY 
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Recall that tj, — A o 6/Q. We summarize our results. 

The dwell time td corresponding to kill probability pK is given by 

{ V   1    ,,£<)<*<*, 

td= { 
Q q° + Pl (C.9) 

where P° = q0~ (s0 - Jfc W^ 
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Appendix D. 

Heaps 

We provide a more detailed but informal discussion of heaps and the HEAPSORT 

routine (read Press et al. (1988) for an expanded treatment). 

Heapsort is a popular sorting routine. It can be recommended wholeheartedly for 
a variety of sorting applications. It is a true "in-place" sort, requiring no auxiliary 
storage. It is an Nlog2N process, not only on average, but also for the worst-case 
order of input data. In fact, its worst case is only 20 percent or so worse than its 

average running time. 

It is beyond our scope to give a complete exposition on the theory of Heapsort. We 
will mention the general principles. If you want to understand the detail, we refer you 
to Knuth (1973), or suggest you analyze the program yourself. 

A set of N numbers a;, * = 1, ..., N, is said to form a "heap" if it satisfies the 

relation 
aj/2>aj   for   l<j/2<jN. (D.l) 

Here the division in ;'/2 means "integer divide": i.e., it is an exact integer, or else it 
is rounded down to the closest integer. Definition (Dl) will make sense if you think of 
the numbers a,-, as being arranged in a binary tree, with the top ("boss") node being 
al, the two "underling" nodes being a2 and a3, their four underling nodes being a4 

through a7, etc. (See Fig. D.l). In this form, a heap has every "supervisor" greater 
than or equal to its two "supervisees", down through the levels of the hierachy. 

If you have managed to rearrange your array into an order that forms a heap, then 
sorting it is very easy: You pull off the "top of the heap", which will be the largest 
element yet unsorted. Then you "promote" to the top of the heap its largest underling. 
Then you promote its largest underling, and so on. The process is similar to what 
happens (or is supposed to happen) in a large corporation when the chairman of the 
board retires. You then repeat the whole process by retiring the new chairman of the 
board. Evidently the whole thing is an Nlog2N process, since each retiring chairman 

leads to log2N promotions of underlings. 

To arrange the array into a heap in the first place, a "sift-up" process is similar to 
corporate promotion. Imagine that the corporation starts our with N/2 employees on 
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the production line, but with no supervisors. Now a supervisor is hired to supervise 
two workers. If he is less capable that both his workers, one of them is promoted in his 
place, and he joins the production line. After supervisors are hired, then supervisors 
of supervisors are hired, and so on up the corporate ladder. Each employee is brought 
in at the top of the tree, but then immediately sifted down, with more capable workers 
promoted until their proper corporate level has been reached. 

In the Heapsort implementation, the same "sift-down" code can be used for the initial 
creation of the heap and for the subsequent retirement-and-promotion phase. One 
execution of the Heapsort function represents the entire life-cyle of a giant corporation: 
N/2 workers are hired; N/2 potential supervisors are hired; there is a sifting up in the 
ranks, a sort of Parkinson's Law; finally, in due course, each of the original employees 
gets promoted to chairman of the board. 

Figure D.I. Ordering implied by a "heap", here of 12 elements. Elements connected by 

an upward path are sorted with respect to one another, but there is not necessarily any 

ordering among elements related only "laterally". 
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Appendix E. 

Computing p(x < Y) 

Consider the cumulative distribution functions below in Figs. E.l and E.2. 

EFFx 

Figure E.l. CDF of AßFFX- 

FYWA 

YO 

Yl 

A°   AI A 
>y 

X   "EFFy 

Figure E.2. CDF of AEFFY- 

The corresponding densities are 

*(*) = PxoW + PxA* - A°x) + C~
P

AO~
PX1

) , 0 < x < A! 
0 
X ' 

and they equal zero outside these regions. 

i-Pyo-Pvi ^        ),0<y<A°y, 

(E.l) 

(E.2) 

163 



Define Z = X - Y. 

The problem is to find p(Z < 0) (Fig. E.3) 

roo     i-y /oo     ry roo 
/     PXY(x,y)dxdy =    /      f(y)py(y)dy. (E.3) 

-oo J—oo J—oo 

f° 'y<0 

f(y) = f px(x)dx = \PXO+ C ?A0~Pxi)y  , o<y < Ai . 
7—oo                         I X 

I 1 , Aj- < y 

(EA) 

/oo pAx—£   . n_r)     _TJ)0     \ Z"00 

f(y)Py(y)dy = /        fe0 + ^—%-Ss^- vk(v)<*y + /      7v(^ • (^-5) 

N N N N 

,.sssssssss    J.. • • . 

. VN' 

•■ s s s s 
• \   \   >.   N   - \ssssssssss 

x-\\\\\\\\\, 
*••////•   - 
\   \   \   N   \   \   \ 
y^   •   •   •   •    " 
.\   \   \   \   N \. '   '   ' \,\   N   \ 

Figure E.3. Calculating p(X < F). 

Case 1: ^<^ 

^<o)=f"f(«0+P4^) 
'C1" fro-fro) 1-iVo-^i< 
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Case 2: A%- > Ai 

+ ( 
1-Pyp-Pyi 

Ay 
)(A°F-^)+iVl, 

= [PxoPro+Pxo 
(t-PYQ-PYlh 

A0 Ay 
(A°x - e)+ , 

^-PXQ-PXI^-PYQ-PYI) 

94° A0 (A - ef , 

+ (l~Pyo     Pyih AO       A°A4-r> 
 —To \AY ~ AX) + Pyi ■ A% 

(£.6) 

rA°r-, 
Piz < o) = j "' (Pxo + (1   Px;„x 

PxJ y)Mv)dy 
rA"x-e roo 

+ /       f{y)Py{v)dy + /     f(y)Py(y)dy» 
JA°,-e JA°x-c 

P(Z < 0) = [PxoPyo + pj1'^"^} (Ay - e) 

+ (1 - Pxo ~ PxJ i1 -Pro'PYJ 
94° A° 

«-ef 

,   ^-Px«-PxXA 
+ PXOPYI + JÖ- 

(E.7) 
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